
Eur. Phys. J. D 41, 599–627 (2007)
DOI: 10.1140/epjd/e2007-00010-4 THE EUROPEAN

PHYSICAL JOURNAL D

Unconditional security of practical quantum key distribution

H. Inamori1, N. Lütkenhaus2,a, and D. Mayers3

1 Centre for Quantum Computation, Clarendon Laboratory, Oxford, UK
2 Helsinki Institute of Physics, Helsinki, Finland
3 NEC Research Institute, Computer Science Department, Maharishi University of Management, Princeton NJ, USA

Received 30 October 2006
Published online 17 January 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. We present a complete protocol for BB84 quantum key distribution for a realistic setting (noise,
loss, multi-photon signals of the source) that covers many of todays experimental implementations. The
security of this protocol is shown against an eavesdropper having unrestricted power to manipulate the
signals coherently on their path from sender to receiver. The protocol and the security proof take into
account the effects concerning the finite size of the generated key. This paper is identical to the preprint
arXiv:quant-ph/0107017, which was finalized in 2001. Therefore, some of the more recent developments,
including the question of composability, are not addressed.

PACS. 03.67.Dd Quantum cryptography

QICS. 21.20.Kd Quantum key distribution – 22.70.+S Security proofs

1 Introduction

We present a proof of unconditional security of a practical
quantum key distribution protocol. It is an extension of
a previous result obtained by Mayers [2,3], which proves
unconditional security provided that a perfect single pho-
ton source is used. In present days, perfect single photon
sources are not available and, therefore, practical imple-
mentations use either dim laser pulses or post-selected
states from parametric downconversion. Both practical
signal types contain multi-photon contributions which
characterise the deviation from the ideal single-photon
state. This compromise threatens seriously the security
of quantum key distributions when the loss rate in the
quantum channel is high [4–6]. Security of such practical
realisation has nevertheless been proved in [7] against re-
stricted type of eavesdropping attacks. The salient idea
used in [7] is that data associated with multiple photon
signals are revealed to a possible eavesdropper, without
the legitimate user’s knowledge. We show here that this
model can be combined with Mayers’ proof. The resulting
extension guarantees unconditional security of a realistic
quantum key distribution protocol against an enemy with
unlimited classical or quantum computational power.

By now, Mayers’ proof has been followed up by other
proof of the security of ideal single-photon quantum key
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distribution [8,9]. Security assuming some restrictions on
eavesdropper’s attack can be found in [10–12]. Security of
protocols in which honest participants use trusted quan-
tum computers can be found in [13].

Unconditional security of a protocol means a security
against a cheater with unlimited computational power,
quantum or classical. In other words, it means that there
is no condition on the cheater. It does not mean that there
is no condition on the apparatus used by the honest par-
ticipants. This last interpretation would be equivalent to
say that we know nothing about the protocol that is actu-
ally implemented. So, each proof of unconditional security
must use a different type of assumptions on these appa-
ratus. Mayers’ original proof applies to an unrestricted
eavesdropper’s attack on the quantum signals, but as-
sumes the source used in the protocol is perfect. In par-
ticular, it assumes that the source emits single photon
pulses. In this paper, we present a derivation of the proof
in which the last assumption is relaxed: we still consider
sources that perform perfect polarisation encoding, but
each signal carries now a random number of photons in
the ideal polarisation mode. The random variables giv-
ing the numbers of photons in the pulses are assumed to
be identically and independently distributed, and we re-
quire that an upper-bound on the probability that a pulse
contains several photons is known. As in Mayers’ origi-
nal paper, there is no assumption on the quantum chan-
nel nor on the detection unit, except that, given an input
quantum state of any signal, the detector’s probability of
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detecting a signal does not depend on the choice of the
measurement basis. A more detailed discussion about as-
sumptions in quantum cryptography together with a new
approach to this problem, especially the problem of an
untrusted BB84 source, can be found in [14].

This paper is divided into two parts. In the first part
we define the assumptions of our proof, the protocol we
refer to and the security notion. We then give the result
of our proof which give the precise quantitative meaning
of our security proof together. In that step the necessary
parameters of the protocol leading to secure quantum key
cryptography are given. We illustrate the results by giving
the asymptotic formulas for the limit of long keys which
show, how many secure bits the protocol will obtain for
a given error rate of an experimental set-up as a function
of the source parameters and the error rate. In the second
part, we present the detailed proof of the statements of
the first part. We have chosen to give all details of this
proof to make it self contained, although it follows closely
Mayers original work. The readers are invited to refer to
the original paper [3] where a simpler situation was anal-
ysed, to get an insight into the main idea of the proof.

2 Security in quantum key distribution

The role of key distribution between two distant legitimate
parties, traditionally called Alice and Bob, is to generate
a shared random binary string, called the private key, that
is guaranteed to be known only by the legitimate parties.
A non-authorised party, traditionally called Eve, should
not be able to obtain any information about the private
key. More precisely, for any eavesdropping strategy Eve
chooses, the conditional entropy of the private key, given
the data Eve acquires during the protocol, should be very
close to the maximum entropy, corresponding to a uni-
formly and independently distributed key. One require-
ment for this is that the conditional probability of the
private key given Eve’s data must be very close to the
uniform distribution. Note that it is not sufficient to im-
pose that the private key be independent of the data Eve
acquires: a key distribution protocol that returns a spe-
cific value for the private key with high probability does
not provide any privacy, even if Eve is inactive during the
key distribution.

Quantum key distribution protocols do not allow Alice
and Bob to share a private key in all circumstances. For
example, Eve can usually block signals between the two
parties. But even if the signals arrive, Alice and Bob can-
not always create a secure key using them. As shown in [6],
it is in principle not possible to create a secure key with
the BB84 protocol (using ideal signals) once the error rate
exceeds 25%. This is true for any post-processing of the
data in the sense of advantage distillation or similar ideas.
It is therefore characteristic for any full protocol (includ-
ing the classical post-processing of the data) that it can
deliver a secure private key only as long as the parameters
describing the transmission of the quantum channel (like
the error rate) are within a certain parameter region.

Any protocol therefore provides a validation test that
tells whether a key can be generated with unconditional
privacy. A key is created only if the test is passed. Other-
wise the session is abandoned. Naturally, one would like to
find an entropic bound given the validation test is passed.
However, it is known that such a bound is inappropriate
for the protocol we consider in this paper (see for exam-
ple [8]): there are simple attacks that give full knowledge
about the private key, although with very small probabil-
ity of success. It is therefore important to choose a good
measure of privacy which nevertheless reflects our basic
intuition.

We follow Mayers’ proof and define formally a key even
in the cases that the validation test is not passed. For this
purpose Bob formally chooses with uniform distribution a
binary sequence as key whenever the test fails. We then
bound Eve’s entropy on this always defined key, condi-
tioned on her knowledge, to be arbitrarily close to the
maximal value. Naturally, in that case Alice and Bob do
not share a key, but this is unimportant since they are
aware of it.

This choice of security notion assures that Eve’s con-
ditional entropy is close to the maximal amount, but this
situation can arise from two different scenarios: either Eve
applies only gentle eavesdropping, which passes the val-
idation tests and gives her basically no information, or
she applies massive eavesdropping, which basically all the
time fails the validation test, but in the unlikely event of
passing the test, it might reveal substantial amount of in-
formation. Nevertheless, in both cases the key will be safe,
since in the first scenario Eve has no information on the
key, while in the second case, the probability of success
will be, in a quantified way, extremely low.

Another important aspect of security of quantum key
distribution protocols is the integrity or the faithfulness of
the distributed key. We must require that whatever Eve
does, it is very unlikely that Alice and Bob fail to share
an identical private key while the validation test is passed.
One way this situation might arise is the error correction
procedure (which is a typical ingredient of a full proto-
col) failing to correct all errors, for example because of an
unusual error distribution.

Finally, we consider families of protocols for which a
parameter, quantifying the amount of a resource used in
a protocol, characterises its security. Usually, the higher
this security parameter’s value is, the higher is the level
of security, but also the amount of a resource required by
the protocol. In the protocol we consider the number of
quantum signals sent by Alice as security parameter.

We now give a formal definition of security. For this
we will introduce some notation. A random variable will
always be denoted by a bold letter, and values taken
by this random variable by the corresponding plain let-
ter. Only discrete random variables will be considered
in this paper. The probability distribution of a random
variable x is denoted by Px, i.e. Px(x) = Pr(x = x) is
the probability that x takes the value x. The joint dis-
tribution of two random variables x and y is denoted by
Pxy, i.e. Pxy(x, y) = Pr(x = x, y = y). The conditional

R
apide N

ot

H
ig

hl
ig

ht
 P

ap
er



H. Inamori et al.: Unconditional security of practical quantum key distribution 601

probability of x given an event E with positive proba-
bility is denoted by Px | E , i.e. Px | E(x) = Pr(x = x|E).
The conditional probability of x given that y takes a
value y is denoted by Px |y=y whenever Py(y) > 0, i.e.
Px |y=y(x) = Pr(x = x|y = y) = Pxy(x, y)/Py(y), when-
ever Py(y) is positive. Let f be a function defined on the
image of x. When no confusion is possible, the notation f
will be adopted to denote the random variable f(x).

We will denote by �κ the random variable giving the pri-
vate key generated in a key distribution session. The key is
a string of m bits where m is a positive integer specified by
the legitimate users. That is �κ takes value in {0, 1}m. We
denote by valid the random variable giving the outcome
of the validation test and by share the random variable
telling whether Alice and Bob share an identical private
key. Given an eavesdropping strategy chosen by Eve, we
denote by v the random variable giving collectively all
data Eve gets during this key distribution session. Hence-
forth, given the eavesdropping strategy adopted by Eve,
v is called the view of Eve, and we will denote by Z the
set of all values v may take.

We adopt the following definition of security for quan-
tum key distribution protocols.

Definition 1. Consider a quantum key distribution pro-
tocol returning a key �κ ∈ {0, 1}m regardless of the outcome
of the validation test, where the length of the key, m, is
fixed and chosen by the user. We say that the protocol has
(asymptotic) perfect security if and only if:

• the protocol is parametrised by a parameter N taking
value in IN called the security parameter, and

• there exists two functions ε1, ε2: IN × IN → R+ such
that ε1(N, m) and ε2(N, m) are vanishing exponen-
tially as N grows (i.e. there exist α > 0, β > 0,
Nmin ∈ IN and a function f : IN → R+ such that
∀N > Nmin, ε1(N, m), ε2(N, m) < e−αNβ

f(m)), and
• there exists a function N0: IN → IN such that, for any

strategy adopted by Eve,

∀m, ∀N ≥ N0(m),
(privacy) H(�κ|v) ≥ m − ε1(N, m) (1)
(integrity) Pr(¬share and valid)≤ε2(N, m) (2)

where v is Eve’s view given her strategy, and

H(�κ|v)
Def
= −

∑

�κ,v|P�κv(�κ,v)>0

P�κv(�κ, v) log2 P�κ |v=v(�κ)

is the Shannon entropy [15–17] of the key �κ given Eve’s
view v.

We will show that the protocol presented in the next sec-
tion will be secure according to this definition. In partic-
ular, this means, that the protocol creates a key of length
m out of N signals. Then, by choosing N large enough
for fixed values of m, we can always assure that Eve’s
conditional entropy is arbitrarily close to the maximum
amount (privacy). Additionally, with a probability arbi-
trarily close to unity, Alice and Bob share the key given
that the validation test is passed (integrity).

3 The protocol

In this section, the quantum key protocol considered in
this paper is described. It is an adaptation of the BB84 [18]
protocol which takes into account the usage of an im-
perfect photon source. Note that the usage of imperfect
source has been discussed as early as the first experimen-
tal implementation of BB84 [19] in the framework of re-
stricted types of eavesdropping attacks. We first make pre-
cise which assumptions on the quantum channel we adopt
in this paper. Then we give a formal description of the
protocol.

3.1 Required technology

In the original proof [3], Mayers considered a practical re-
alisation of quantum key distribution prone to noise and
signal loss. However, the legitimate parties were assumed
to be using a perfect single photon source — a source
that emits exactly one photon in the chosen polarisation
state. No restriction was imposed on the photo-detection
unit used in the protocol, except that given an incoming
signal, the probability of detection was required to be in-
dependent of the basis used to measure the signal. It was
argued in [3] that Eve can take advantage of a detection
unit in which the probability of detection depends on the
basis chosen for the measurement, and we will adopt in
this paper the same restriction regarding the detection
unit.

The new feature in this paper is that we allow the use
of imperfect source of photons in the following sense: given
a polarisation state specified by the user, the source emits
photons exactly in the specified polarisation state, but in a
mixture of Fock states. That is, the source emits n photons
in the given polarisation state with probability pn, where
n ∈ IN and p0, p1, p2, . . . is a probability distribution. The
user does not have to know how many photons were ac-
tually emitted. The only restriction we impose is that an
upper bound Mmax on the number of emitted signals con-
taining several photons is known within a confidence limit
given by the (small) probability Pr(M > Mmax). We re-
strict ourselves to provide this bound for signals with iden-
tically and independently distributed multi-photon proba-
bility pM . In that case we can choose Mmax = (pM +τM )N
and obtain Pr(M > Mmax) < exp(−τ2

MN), as explained
below. Other methods for providing Mmax and Pr(M >
Mmax) can be used, where the corresponding terms re-
place the here derived and easily identifiable expressions
in the subsequent results.

The authors believe this relaxation of requirement has
practical importance, since single photon sources are not
yet available, due to technological limitations. Further-
more, it has been pointed out [6] that in most experi-
mental implementations of quantum key distribution, the
quantum signals transmitted by the legitimate parties can
be described as mixtures of Fock states.
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As an example, consider a practical source emitting a
coherent state of light in a given polarisation:

∣∣α
〉

= e−
|α|2

2

∞∑

j=0

αj

√
j!

∣∣ j
〉

(3)

where
∣∣ j
〉
, j ∈ IN is the number state — or Fock state

— describing a state of j photons in the considered po-
larisation (therefore, for α �= 0, a coherent state has an
indefinite number of photons). If we write α = |α|eiφ,
|α| and φ are called amplitude and phase of the coherent
pulse, respectively.

In general, the phase of a pulse is completely unknown,
or can be rendered random thanks to a phase randomi-
sation technique. Since the phase is then uniformly dis-
tributed, a pulse state in a given polarisation is described
by the density matrix:

ρsource =
1
2π

∫ 2π

0

∣∣ |α|eiφ
〉〈|α|eiφ

∣∣dφ (4)

=
1
2π

∫ 2π

0

e−|α|2
∞∑

j,j′=0

|α|j+j′

√
j!j′!

eiφ(j−j′)∣∣ j
〉〈

j′
∣∣dφ

(5)

=
∞∑

j=0

e−|α|2 |α|2j

j!

∣∣ j
〉〈

j
∣∣. (6)

Therefore, the signals emitted by a coherent source of light
becomes a classical mixture of Fock states due to the lack
of a phase reference. Another example of practical source
is a source emitting thermal states of light. Such states
are already mixtures of Fock states. The above de-phasing
argument applies in general for any signal state. Further
studies of source characterisation can be found in [20].

We summarise the assumptions on the quantum setup
adopted throughout this paper:
• the legitimate parties use a source of photons that

sends a mixture of Fock states ρ =
∑∞

n=0 pn

∣∣n
〉〈

n
∣∣

in the polarisation state exactly as specified by the
user. The numbers of photons in the pulses emitted
by the source are assumed to be identically and in-
dependently distributed. The upper bound Mmax on
the emitted number of multi-photon signals during the
protocol is known by the legitimate parties to hold ex-
cept with a negligible probability Pr(M > Mmax);

• the legitimate parties use a photo-detection unit such
that for any given signal, the probability of detection
is independent of the choice of the measurement basis;

• the signals and Alice’s and Bob’s polarization bases
are chosen truly at random;

• Eve cannot intrude Alice’s or Bob’s apparatus by uti-
lizing the quantum channel. She is restricted to inter-
action with the signals as they pass along the quantum
channel.

3.2 The protocol

The quantum key distribution protocol under considera-
tion based on Bennett and Brassard’s BB84 [18] is de-

fined. It comprises three stages: agreement on parameters
of the protocol and security constants, the transmission of
quantum signals, and the execution of a classical protocol
together with the validation test.

Pre-agreement

1. Alice and Bob specify:
• m, the length (in bits) of the private key to be

generated;
– N , the number of quantum signals to be sent by

Alice. This integer is the security parameter of the
protocol;

• δ, the maximum threshold value for the error rate
for the validation test;

• rmin, the minimum threshold value for Bob’s de-
tection rate (1 > rmin > Mmax/N);

• pR, the proportion of the shared bits that must
be publicly announced for the validation test (0 <
pR ≤ 1/2);

• τec, τf , τM , τ̂ , and τp the security constants of
the protocol. They are small strictly positive real
numbers chosen so that δ + τec < 1, δ + τf < 1,
rmin > Mmax/N , τ̂ < 1−pR

2 , τp < 1.

Quantum transmission

2. Alice and Bob initialise the counter of the signals as
i = 0 and Bob initialises the set of detected signals as
D = {}. Then until the pre-agreed number of signals
have been sent (i = N), the following is repeated:
(a) Alice and Bob increment i by one;
(b) Alice picks randomly with uniform distribution a

basis ai ∈ {+,×} and a bit value gi ∈ {0, 1};
(c) Alice makes her source emit a pulse of pho-

tons in the state |Ψ(gi, ai)〉 where |Ψ(0, +)〉,
|Ψ(1, +)〉, |Ψ(0,×)〉 and |Ψ(1,×)〉 correspond to
single photon states of polarisation angles 0,
π/2, π/4 and −π/4, respectively. We recall that
{∣∣Ψ(0, +)

〉
,
∣∣Ψ(1, +)

〉} forms an orthonormal ba-
sis of Hphoton, the Hilbert space for single photon
polarisation states, and

∣∣Ψ(0,×)
〉

=

∣∣Ψ(0, +)
〉

+
∣∣Ψ(1, +)

〉
√

2
,

∣∣Ψ(1,×)
〉

=

∣∣Ψ(0, +)
〉− ∣∣Ψ(1, +)

〉
√

2
;

(d) Bob measures Alice’s pulse in the basis bi where
bi ∈ {+,×} is chosen randomly at each time. If at
least one photon is detected, the index i is added to
the set D of detected signals’ indexes, and the out-
come of the measurement is recorded as hi ∈ {0, 1}
(if the detection unit finds photons in both modes
hi = 0, 1, the value for hi is chosen randomly in
{0, 1} by Bob). If no photon is detected at all, hi

is assigned the value ⊥.

Note that the random choice of basis in step (d) might be
provided by a beamsplitter (or a coupler) followed by two
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measurement setups, each measuring the photons in the
basis + and × respectively. It might also be given by an
external random number generator acting on a polarisa-
tion rotator.

Classical part

We denote by n the number of signals detected by Bob,
i.e. n = |D|, and by �a = (a1, . . . , aN ) ∈ {+,×}N ,
�b = (b1, . . . ,�bN) ∈ {+,×}N , �g = (g1, . . . , gN ) ∈ {0, 1}N

and �h = (h1, . . . , hN) ∈ {0, 1,⊥}N the outcome of the
quantum transmission (Step 2). Restrictions of these vec-
tors onto some specified subset X ⊂ {1, . . . , N} will be
denoted by �a(X),�b(X), �g(X),�h(X).

3. Bob announces the set of detected signals by D to
Alice.

4. Bob picks up randomly a subset of signals which will
be revealed for the validation test R ⊂ {1, . . . , N} ,
where each position i ∈ {1, . . . , N} is put in R with
probability pR.

5. Bob announces the revealed set R and the measure-
ment basis of all signals �b to Alice.

6. Bob announces the bit values of the test set �h(D∩R)
to Alice.

7. Alice computes the set of corresponding signals Ω =
{i ∈ D: ai = bi}, the set of corresponding test signals
T = Ω ∩ R and the set of untested corresponding
signals E = Ω ∩ R. We denote |E| by l.

8. Alice announces the polarisation basis of all of her
signals �a, thus announces implicitly Ω and E as well.
The bitstreams �g(E) and �h(E) are usually called sifted
keys.

9. Alice chooses a linear error correcting code [15,16] ca-
pable of correcting �(δ + τec)(1− pR)|Ω| errors in E.
Its parity check matrix, F , is a r × l binary matrix,
where r is the number of redundant bits required to
correct �(δ + τec)(1 − pR)|Ω| errors in l bits using
the linear error correcting code. Alice announces the
syndrome �s = F�g(E) (mod 2) to Bob.

10. Receiving the parity check matrix F and the syn-
drome �s, Bob runs the error correction on his sifted
key �h(E) and obtains �h′(E). If there are less than
�(δ+τec)(1−pR)|Ω| errors in E, Bob corrects success-
fully all the errors and obtains �g(E), i.e. �h′(E) = �g(E).

11. Alice picks up randomly with uniform distribution a
m × l binary matrix K to which we will refer as the
privacy amplification matrix. Alice announces K pub-
licly.

12. Receiving the privacy amplification matrix K, Bob
computes �κ′ = K�h′(E) (mod 2).

Validation test

Alice runs the validation test.

13. Alice tests whether the following conditions are all
satisfied:
• Bob’s detection rate is greater than rmin, i.e.

n > rminN ; (7)

• the size of D complies to the following inequalities:

l̂min

2
≥ (δ + τf )(1 − pR)n, (8)

m + r ≤ l̂min

[
1−H1

[
2(δ + τf )1−pR

2 n

l̂min

]
−τp

]
,

(9)

where

l̂min =
(

1 − pR

2
− τ̂

)
(n − Mmax) (10)

is a probabilistic lower bound on the number of
signals on the set E which is due to single photon
signals;

• the number of errors in the tested set T is lower
than the maximally allowed value. More precisely,

|{i ∈ T : gi �= hi}| < d, (11)

where d = δ|Ω|pR.
The validation test is passed if and only if all the con-
ditions above are satisfied. The private key is the bit-
stream obtained by Alice as follows:

14. Alice computes the private key, defined as:
• �κ = K�g(E) (mod 2) if the validation test is

passed,
• a m-bit string �κ chosen randomly with uniform

distribution each time the validation test is not
passed.

This protocol defines a key regardless whether the valida-
tion test is passed. The choice of the security constants
used in the protocol is clarified in the following section.

Note. The matrix K can be prepared in advance, and
Eve could know its form before the transmission of the
quantum signal. More precisely, Alice and Bob could pre-
agree on some set of matrices K for various values of m,
and l. It is the special property 4 of F and K which is
required here, and which will be introduced and explained
in Section 5.3. This property is satisfied automatically if
we choose K as random binary matrix, as specified in the
protocol, and the constraint of equation (9) is satisfied.
Our security proof can therefore immediately adapted to
other choices of F and K together with their respective
constraints replacing equation (9) to satisfy the underlying
required property 4 of Section 5.3.

4 Security of the protocol

In this section we present the security statement for the
protocol described in Section 3.2. If follows the structure
of Definition 1. The proof of the security statement is given
in the remainder of the paper.

Theorem 1. The expected conditional Shannon entropy
of the key �κ returned by the protocol described in Sec-
tion 3.2 given Eve’s view v is lower bounded, for any
N > 0, by

H(�κ|v) ≥ m − ε1(N, m) (12)
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where the difference ε1(N, m) between the bound and the
maximal value m is given by

ε1(N, m) = 2
(

m +
1

ln 2

)
h(δ, τf , pR, n)

+2

√

2
(

m +
1

ln 2

)
mh(δ, τf , pR, n)

+m
(
e−2τ2

M N + e−2τ̂2(rminN−Mmax)

+2−τp( 1−pR
2 −τ̂)(rminN−Mmax)

+
√

g(δ, τf , pR, n)
)

(13)

where

g(δ, τf , pR, n) = exp

[
− 1

2δ + τf
τ2
f

p2
R

4
rminN

+ 2
(

τf

2δ + τf

)2
]
, (14)

h(δ, τf , pR, n) = 2

√√
g(δ, τf , pR, n) +

√
g(δ, τf , pR, n).

(15)

Besides, the conditional probability that Alice and Bob
share an identical private key given that the validation test
is passed is lower bounded for any N > 0 by:

Pr(¬share and valid) ≤ ε2(N, m), (16)

where

ε2(N, m) =

min
τΩ∈(0,1/2)

[
e−

1
2δ+τec

τ2
ecp2

R( 1
2−τΩ)rminN+2( τec

2δ+τec
)2

+e−2τ2
ΩrminN

]
. (17)

The functions ε1(N, m) and ε2(N, m) decrease exponen-
tially with N , as required by the definition of security
(Def. 1).

The parameters, the number of emitted signals N out
of which the key of length m is created, are chosen in
accordance with the performance of the set-up used for
preparation, transmission and detection of the quantum
signals in view of equation (9). As the number of these
transmissions goes to infinity, we can neglect statistical
fluctuations of the signal properties and describe the ratio
between detected signals and sent signals by a detection
rate pD = n/N and rmin = n/N . All security constants
τec, τf , τp, τ̃ and τM can be chosen to be arbitrarily small,
and the asymptotic key generation rate out of one bit of
the sifted key reads is given as the length of the sifted key
over that of the final key in terms of the observed error
rate δ as

m

l
=
(

1 − pM

pD

)[
1 − H1

(
2δ

1 − pM

pD

)]
− H1(δ). (18)
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Fig. 1. Asymptotic gain rates using a simulation with the help
of experimental parameters. The parameters are drawn from
Bourennane et al. [21] for 1.5 µm, Marand and Townsend [22]
for 1.3 µm and Townsend [23] for 0.8 µm.

Here we used we used asymptotic equalities for the sifted
key length l � (1 − pR)n/2 and �(δ + τec)(1 − pR)|Ω| �
�δl. Furthermore, we made use of the Shannon limit [15]
r(�δl, l) � lH1(δ).

The overall rate of secure key bits per sent signal m/N
can be calculated directly by multiplying equation (18)
with the asymptotic formula

l

N
� 1 − pR

2
pD . (19)

The ratio G between key length and received signals m/n
can be obtained by multiplication with l/n � (1 − pR)/2.
Moreover, in the limit of arbitrary long keys we can use
the limit pR → 0 since even testing a ‘small’ fraction of
the long key will have statistical significance sufficient for
our purpose. Examples of the resulting values of G as
a function of distance are shown in Figure 1 for various
wavelength. To put our results into context, we relate our
results in Figure 2 to those obtained for the limited secu-
rity level of security against individual attacks. Note that
the difference between the two results is not substantial.
More importantly, the difference might be due to the proof
technique used in our result. Our results should there-
fore not be interpreted as to claim that coherent attacks
give more information to Eve than individual attacks do.
Furthermore, we lay out the relevant bounds on improved
security proofs. The rate is bounded due to the photon
number statistics of the source, resulting in

Gbound =
1
2

(pD − pM ) (20)

as shown in [7]. We recover this bound by setting δ = 0 in
our asymptotic bound.

The distance, over which secure communication is pos-
sible, is bounded by the detector noise. As shown in
Brassard et al. [6], the minimal transmission efficiency
FWCP in the situation of Poissonian photon number dis-
tribution of the source is given by

FWCP ≈ 2
√

dB

ηB
(21)

R
apide N

ot

H
ig

hl
ig

ht
 P

ap
er



H. Inamori et al.: Unconditional security of practical quantum key distribution 605

0 10 20 30 40 50
−6

−5

−4

−3

−2

lo
g 10

 o
f o

pt
im

al
 r

at
e

distance [km]

coherent
individual
rate bound
distance bound

Fig. 2. We use the parameters of Bourennane et al. [21] for
1.5 µm to show the secure gain rate per time slot using our
results (‘coherent’). For comparison, the corresponding results
for security against individual attack [7] are given. The rate is
bounded due to the Poissonian photon number distribution of
the source and the loss in the quantum channel (‘rate bound’)
as shown in [7]. The combination of the source statistics, the
loss and detector dark counts, there is a fundamental bound
on the distance over which secure QKD could be proved with
more advances proofs than ours, as shown in Brassard et al. [6].

where dB is the dark count probability of the detector
per signal slot and ηB is the single photon detection effi-
ciency of the detector. The corresponding distance (given
the parameters of the experiment) is shown in Figure 2.

We have therefore a clear picture of the rates and dis-
tances which are shown to be secure by our proof (the
area below the curve ‘coherent’ in Fig. 2), those that are
shown to be insecure [6,7] (the area outside of the two
bound curves). Note that the area between the ‘coherent’
line and the two bounds is the area of the unknown. Fu-
ture classical protocols taking on the error correction and
privacy amplification tasks from our protocol in a differ-
ent way (but leaving the quantum transmission and mea-
surement untouched) and/or improved security proofs can
proclaim more of this area ‘secure’.

5 Proof of the main result

The structure of the proof follows. In the first section, an
important feature of the distribution of errors during the
quantum transmission is presented. As an immediate con-
sequence we can proof the integrity of the protocol, mean-
ing that when the validation test is passed, Bob shares the
private key with Alice with high probability. The second
section deals with the multi-photon signals’ issue. It gives
an upper bound on the number of bits a spy can get by an
attack called photon number splitting attack. In the third
section, we explore the method of privacy amplification
implemented by binary matrices and taking into account
linear error correction tools. It turns out that the privacy

of the protocol is equivalent to the “privacy” in a mod-
ified protocol . This equivalence is proved in Section 5.4,
and the corresponding mathematical model is provided in
Section 5.5. Finally, the proof of privacy of the modified
protocol is given.

There are several points where our proof deviates from
that of Mayers [3]. Most notably this difference can be
seen in Section 5.3 where the deviation between the proofs
shows up quantitatively. However, changes in the protocol
(in our protocol the number of transmitted signals is fixed
which are not necessarily all detected, and not the number
of detected signals, as in [2]) make it necessary to check in
detail that the basic proof idea of Mayers carries through.

5.1 On the distribution of errors and the proof
of integrity

We start with a property regarding the distribution of er-
rors which is based solely on basic probability theory. It
allows to make statements on the key derived from the
set E based on the counting of errors in the set T . As an
immediate application this property allows us to proof the
integrity of the QKD protocol. Note, that in a practical
run of quantum key distribution, we could omit this es-
timation, since we can learn the exact number of errors
in E during the later stage of error correction. However,
the kind of estimation presented here serves a second pur-
pose, which is used later on in our proof. This purpose
is to make a statement about the eavesdropping strategy
and its expected error rate from the observed error rate.
Let us explain this by an example: If Eve implements an
intercept/resend attack where she measures Alice’s bit in
a randomly chosen signal basis and she resends a state to
Bob corresponding to her measurement result, then she
might be lucky an choose always the correct signal basis.
In that (unlikely) event, she would cause no errors while
obtaining full information on the key. Indirectly, the prop-
erty below quantifies the idea that the observed numbers
of errors will belong to a typical run of the protocol.

Property 1. Let S be a set of finite size, s. Let C be a
randomly chosen subset of S. The random variable giving
the choice of C is denoted by C. Let A and B be two
subsets of S chosen randomly as follows:

1. each element in S is put (exclusively) in A or B or
neither of these sets with respective probabilities pA,
pB and 1 − (pA + pB). That is, the random variables
giving the set to which the indexes in S belong to are
independently and identically distributed;

2. furthermore, the random variables giving the set to
which indexes in S belong to are independent of the
random variable C.

We denote by A, B the random variables giving the set A
and B, respectively. Then for any positive real numbers δ,
ε such that 0 < δ < δ + ε < 1,

Pr(|A ∩ C| < δspA and |B ∩ C| ≥ (δ + ε)spB)
≤ f(δ, ε, pA, pB, s) (22)
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where

f(δ, ε, pA, pB, s) =

exp

[
− 1

2δ + ε
ε2(min{pA, pB})2s + 2

(
ε

2δ + ε

)2
]

. (23)

Proof. For any subset C of S, given C = C, each element
of C is either in A or in B with respective probabilities
pA and pB.

Now c = |C| is either smaller than �(δ + ε
2 )s� or bigger

than �(δ + ε
2 )s.

• If c ≤ �(δ + ε
2 )s�, let C′ = C ∪ D where D is some

subset of S \C such that |C′| = c′ = �(δ + ε
2 )s�. Then

C ⊂ C′, and

Pr(|B ∩ C| ≥ (δ + ε)spB|C = C)

≤ Pr(|B ∩ C| ≥ (δ + ε)spB|C = C′). (24)

Furthermore,

(δ + ε)spB =
δ + ε

δ + ε
2

pB

(
δ +

ε

2

)
s ≥
(
1 +

ε

2δ + ε

)
pBc′,

(25)
and using the property 16 from Appendix for the set
B and the set C′,

Pr(|B ∩ C| ≥ (δ + ε)spB|C = C′)

≤ Pr(|B ∩ C|≥
(
1 +

ε

2δ+ε

)
pBc′|C = C′) (26)

≤ exp

[
−2
(

εpB

2δ + ε

)2

c′
]

(27)

≤ f(δ, ε, pA, pB, s), (28)

since (min{pA, pB})2 ≤ p2
B and c′ ≥ (δ + ε

2

)
s − 1. Of

course this implies that

Pr(|A ∩ C| < δspA and |B ∩ C| ≥ (δ + ε)s|C = C)
≤ f(δ, ε, pA, pB, s). (29)

• If c ≥ �(δ + ε
2 )s, then

δspA =
δ

δ + ε
2

pA

(
δ +

ε

2

)
s ≤
(

1 − ε

2δ + ε

)
pAc (30)

and using the Property 16 for the set A and the set C,

Pr(|A ∩ C| < δspA|C = C)

≤ Pr
(
|A ∩ C|<

(
1− ε

2δ + ε

)
pAc|C = C

)

(31)

≤ exp

[
−2c

(
pAε

2δ + ε

)2
]

(32)

≤ f(δ, ε, pA, pB, s), (33)

since (min{pA, pB})2 ≤ p2
A ≤ 1 and c ≥ (δ + ε

2

)
s >(

δ + ε
2

)
s − 1. Again, this implies that

Pr(|A ∩ C| < δspA and |B ∩ C| ≥ (δ + ε)s|C = C)

≤ f(δ, ε, pA, pB, s). (34)

We conclude that for any C,

Pr(|A ∩ C| < δspA and |B ∩ C| ≥ (δ + ε)s|C = C)

≤ f(δ, ε, pA, pB, s). (35)

Thus

Pr(|A ∩ C| < δspA and |B ∩ C| ≥ (δ + ε)spB)

=
∑

C

PC(C) Pr(|A ∩ C| < δspA

and |B ∩ C| ≥ (δ + ε)spB|C = C) (36)

≤ f(δ, ε, pA, pB, s), (37)

which concludes the proof. �
An immediate consequence of property 1 is that the

error rate in the sifted key is not significantly higher than
the error rate observed by Alice and Bob during the val-
idation test. This implies the integrity of the protocol, as
defined in Definition 1, or more formally:

Property 2. The joint probability that Alice and Bob fail
to share an identical key and that the validation test is
passed is lower bounded by:

Pr(¬share and valid) ≤ ε2(N, m) (38)

where

ε2(N, m)= min
τΩ∈(0,1/2)

[
e−

1
2δ+τec

τ2
ecp2

R( 1
2−τΩ)rminN+2( τec

2δ+τec
)2

+e−2τ2
ΩrminN

]
. (39)

Proof. We have seen that Alice and Bob run an error-
correcting scheme capable of correcting �(δ + τec)(1 −
pR)|Ω| errors in E. Thus Bob shares exactly the same
key after the error correction step if there are less than
(δ + τec)(1− pR)|Ω| errors in E. Given that Ω = Ω where
Ω ⊂ {1, . . . , N}, the probability that the validation test
passes while there are more than (δ+τec)(1−pR)|Ω| errors
in E is bounded by:

Pr(P(T , δ|Ω|pR) ∧ ¬P(E, (δ + τec)|Ω|(1 − pR)))
= Pr(|T ∩ C| < δ|Ω|pR and |E ∩ C|
≥ (δ + τec)|Ω|(1 − pR)) (40)
≤ f(δ, τec, pR, 1 − pR, |Ω|)

≤ exp

[
− 1

2δ + τec
τ2
ecp

2
R|Ω| + 2

(
τec

2δ + τec

)2
]

. (41)

using the above property for S = Ω and where C is the
random variable giving the set of discrepancies between
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Alice’s bits �g(Ω) and Bob’s bits �h(Ω) on Ω. Indeed, R is
independent of C, and consequently the random variables
giving the set (E or T ) to which the indexes in Ω belong
to are independently and identically distributed (Pr(i ∈
E|i ∈ Ω) = (1 − pR) and Pr(i ∈ T |i ∈ Ω) = pR), and
independent of C. The above implies that the probability
that the error correction fails to reconcile Alice’s and Bob’s
sifted keys while the validation test is passed is upper-
bounded by an exponentially decreasing function of |Ω|.
Now, each index in D has probability 1/2 to be put in
the set Ω. Let τΩ be a constant obeying 0 < τΩ < 1/2.
Suppose we are given that n = n for some positive integer
n. Using Property 16 in the Appendix, the probability that
there are less than (1

2 − τΩ)n is bounded by:

Pr
(
|Ω| ≤

(
1
2
− τΩ

)
n|n = n

)
≤ e−2τ2

Ωn. (42)

Therefore,

Pr(¬share ∧ valid)
≤ Pr(P(T , δ|Ω|pR) ∧ ¬P(E, (δ + τec)|Ω|
× (1 − pR))

∣∣∣n > rminN) (43)

≤ Pr (P(T , δ|Ω|pR) ∧ ¬P(E, (δ + τec)|Ω|

×(1 − pR))
∣∣∣ |Ω| ≥

(
1
2
− τΩ

)
n, n > rminN

)

+ Pr
(
|Ω| ≤

(
1
2
− τΩ

)
n
∣∣∣n > rminN

)

≤ e−
1

2δ+τec
τ2

ecp2
R( 1

2−τΩ)rminN+2( τec
2δ+τec

)2

+ e−2τ2
ΩrminN ,

(44)

since n > rminN if the validation test is passed. Since this
equations has to hold for all values τΩ ∈ (0, 1/2), we have
especially

Pr(¬share ∧ valid) ≤
min

τΩ∈(0,1/2)

[
e−

1
2δ+τec

τ2
ecp2

R( 1
2−τΩ)rminN+2( τec

2δ+τec
)2

+e−2τ2
ΩrminN

]
. (45)

This concludes the proof. �

5.2 On multiple photon signals

Let A = {1, . . . , N} be the set of indexes of all signals
Alice sent. Each signal Alice sends contains zero, one or
more photons, with respective probabilities denoted by
pV , pS and pM . Alice does not know how many photons
she actually emits in each individual pulse. However, a po-
tential eavesdropper Eve can learn the actual number of
emitted photons without disturbing the quantum signal,
thanks to a quantum non demolition measurement (we
assume no technological limitation for the enemy). Let’s
denote by V , S and M the set of indexes of signals contain-
ing zero, one and more photons, respectively. Therefore,

V ∪ S ∪M = A and the set V , S and M are disjoint. We
will denote by Σ = (V, S, M) this partition of A. We will
deal with the worst case scenario in which the partition Σ
is unknown to Alice, but perfectly known to Eve.

In the following sections, a lower bound on the number
of bits in the sifted key not arising from multi-photon sig-
nals (that is |E ∩ M |) will be required. Most of practical
implementations of quantum key distribution today use a
quantum channel with high loss rate, due to technologi-
cal limitations. This loss rate must be taken into account
to establish the required lower bound. For, Eve could re-
place secretly the quantum channel by a perfect quantum
channel without loss (again, we assume no technological
limitation for Eve). Eve might then stop signals contain-
ing only one photon, as long as the resulting loss rate of
the quantum channel does not exceed significantly the ex-
pected loss rate of the original channel. By doing so, Eve
increases the proportion of bits arising from multi-photon
signals in the sifted key, without being noticed by the legit-
imate users. Now if a signal sent by Alice contains several
photons, Eve can split off one photon from the pulse with-
out disturbing the polarisation of the remaining photons.
She stores the stolen photon until bases are announced and
learns deterministically the corresponding bit by measur-
ing it in the correct basis. This attack is usually referred
to as the photon number splitting attack [6,7]. It is in view
of this attack (in a slightly different context) that we will
need to estimate the number of bits in the sifted key that
are not arising from multi-photon signals.

It is possible to give a probabilistic lower bound on the
number of bits in the sifted key that are not arising from
multiple photon signals, provided that an upper-bound on
the probability pM is given. More precisely,

Property 3. Let’s denote by l̂ the number of bits in E

that are not arising from multi-photon signals, i.e. l̂ =
|E ∩ M |. We denote by l̂ = |E ∩ M | the corresponding
random variable. We recall that we defined the random
variable l̂min as:

l̂min =
[
1 − pR

2
− τ̂

]
(n − Mmax) (46)

where the security constants τM and τ̂ are strictly positive
real number such that Mmax/N < rmin and 1−pR

2 − τ̂ > 0.
Then the joint probability that n > rminN and that l̂ <

l̂min is bounded by:

Pr(l̂ ≤ l̂min ∧ n > rminN) ≤
e−2τ̂2(rminN−Mmax) + e−2τ2

MN . (47)

Proof. We consider the worst case scenario in which all
losses and errors are caused by Eve’s intervention on the
quantum channel. Obviously, in order to minimise l̂, Eve
intervene in such a way that M ⊂ D.

Suppose we are given that Bob detected n = n signals
and that M = M . Then there are at least n− |M | signals
in D that are not arising from multi-photon pulses. Now,
each of these non-multiphoton signals in D has probability
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(1 − pR)/2 of being put in the set E. Therefore, the prob-
ability that there are less than [(1 − pR)/2 − τ̂ ] (n − |M |)
signals in the sifted key not arising from multi-photon sig-
nals is bounded by:

Pr
(

l̂ ≤
[
1 − pR

2
− τ̂

]
(n − |M |)

∣∣∣n = n, M = M

)

≤ e−2τ̂2(n−|M|) (48)

using Property 16 in Appendix.
Now, the marginal probability that Alice sent more

than (pM + τM )N multi-photon signals is bounded using
property 16 in Appendix:

Pr(|M | ≥ (pM + τM )N) ≤ e−2τ2
MN (49)

since each signal Alice sends has probability pM of being
in M .

Note that [(1 − pR)/2 − τ̂ ] (n − |M |) ≥ l̂min whenever
|M | ≤ (pM + τM )N . Therefore, given that n = n, the
probability that there are less than l̂min signals in the
sifted key that were not emitted with several photons is
bounded by:

Pr(l̂ ≤ l̂min|n = n) ≤ Pr(|M | ≥ (pM + τM )N |n = n)

+ Pr(l̂ ≤ l̂min and |M | ≤ (pM + τM )N |n = n)
(50)

≤Pr(|M | ≥ (pM + τM )N |n = n)

+ e−2τ̂2(n−(pM+τM )N). (51)

Multiplying both side by Pn(n) and summing over n >
rminN , we get:

Pr(l̂ ≤ l̂min ∧ n > rminN) ≤ Pr(|M | ≥ (pM + τM )

× N ∧ n > rminN) +
∑

n>rminN

e−2τ̂2(n−(pM+τM )N)Pn(n)

(52)

≤ Pr(|M | ≥ (pM + τM )N)

+ e−2τ̂2(rminN−(pM+τM)N) (53)

≤ e−2τ2
M N + e−2τ̂2(rminN−Mmax), (54)

which concludes the proof. �

5.3 On privacy amplification

In this section, diverse notions used in connection with
privacy amplification are defined. In particular, we define
d̂w, the minimal weight of a privacy amplification code,
used in conjunction with an error-correcting code and an
imperfect source. Finally, an important probabilistic lower
bound on this weight is proved. This bound will be used
in the last part of the proof. It is this minimal weight
which will keep track of the multi-photon signals. The
changed estimation of the minimum weight is therefore the

most important change of this proof as respect to Mayers
proof [3], although other details need to be adapted.

The privacy amplification is specified by a m×l binary
matrix K. The linear error correction code is specified by
a r × l binary parity check matrix F . We introduce some
notations. Let G be the (r + m) × l matrix:

G =
(

F
K

)
. (55)

For any matrix A, A(i) denotes its ith row and A(i) its ith
column.

Recall that l̂ = |E ∩ M | is the number of signals in E
that are not arising from pulses sent with several photons.

Let Ĝ be the (r + m) × l̂ matrix obtained from G by
removing the columns G(i), i ∈ M ∩ E, corresponding to
the multi-photon signals. Equivalently, Ĝ is the matrix
formed by the l̂ columns of G corresponding to signals in
E ∩ M . Let Ǧ be the (r + m) × (l − l̂) matrix formed
by the (l − l̂) columns G(i), i ∈ E ∩ M . Similarly, we
define F̂ , K̂ obtained from F , K by removing the l − l̂
columns F (i), G(i), i ∈ E ∩ M respectively. And F̌ , Ǩ

are the matrices formed by the l − l̂ columns F (i), G(i),
i ∈ E ∩ M respectively. Thus

Ĝ =
(

F̂

K̂

)
, Ǧ =

(
F̌
Ǩ

)
. (56)

Let Ĝ be the set of linear combinations of rows of Ĝ. Let
Ĝ∗ be the set of linear combinations of rows of Ĝ which
contain at least one row of K̂, i.e.

Ĝ∗ =

{
r+m∑

i=1

ziĜ(i) (mod 2) : �z ∈ {0, 1}r+m, zj = 1

for at least one j ∈ {r + 1, . . . r + m}
}

. (57)

We define Ĉ as:

Ĉ =
{
�x ∈ {0, 1}l̂ : Ĝ�x = �0

}
=
(
Ĝ
)⊥

. (58)

Note that Ĉ⊥ = Ĝ. We define the minimum weight of Ĝ∗
as the integer:

d̂w = min
�x∈Ĝ∗

w(�x). (59)

Equivalently,

d̂w = min
�u∈{0,1}r,�v∈{0,1}m\{�0}

w(�uT F̂ + �vT K̂). (60)

The minimum weight is an important characterisation of
the combination of the error correction code matrix F and
the privacy amplification matrix K. It denotes the mini-
mum number of signals contributing to key bits or parities
of sets of key bits after taking into account publicly known
parities from the error correction code and the knowledge
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from multi-photon signals. We need a probabilistic bound
on this quantity. Here we will derive it for the case of ran-
dom coding where K is a random binary matrix, but we
would like to point out that other suitable choices for K
are indeed possible, and might lead to increased perfor-
mance of the protocol in terms of the yield of secure bits.
The important property to be fulfilled is Property 4.

We approach the bound on d̂w via the following lemma
taken directly from [3]:

Lemma 1. Let k, a and b be positive integers. Let A be
any a × k binary matrix. Let B be a b × k binary matrix,
picked at random with uniform distribution. We denote
by B the corresponding random variable. Let dAB be the
minimum weight of linear combinations of rows of A and
B that contain at least one row of B:

dAB = min
�u∈{0,1}a,�v∈{0,1}b\{�0}

w(�uT A + �vT B). (61)

Then for any positive real number x such that x/k < 1/2
and for any positive real number τ ,

a + b

k
≤ 1 − H1

(x

k

)
− τ ⇒ Pr(dAB < x) ≤ 2−τk

(62)
where H1 is the binary entropy function.

Proof of the lemma. Let C be the (a + b) × k matrix
defined by:

C =
(

A
B

)
. (63)

Define the real number R as R = kH−1
1 (1 − a+b

k − τ)
where H−1

1 is the inverse function of the restricted bijec-
tive function H1 : [0, 1

2 ] → [0, 1]. Assume that a+b
k ≤

1 − H1(x
k ) − τ . This implies that x ≤ R. Let B be the

sphere in {0, 1}k centred at the zero string �0 and of radius
R. For i ∈ {1, . . . b}, let’s denote by qi the probability that
there exists �z ∈ {0, 1}a+i−1 such that B(i)+

∑a+i−1
j=1 zjC(j)

is in B (equivalently, qi is the probability that the coset
B(i) + Span

({C(j)}j≤a+i−1

)
intersects B). Then

Pr(dAB < x) ≤ Pr(dAB < R) (64)

= q1 + q2(1 − q1) + · · · + qb

b−1∏

i=1

(1 − qi)

(65)

≤
b∑

i=1

qi, (66)

since the probability that dAB < R is the probabil-
ity that, if one picks successively at random the rows
B(1), B(2),. . . , B(b), at some step i ∈ {1, . . . , b} the set
B(i) + Span

({C(j)}j≤a+i−1

)
intersects B.

Now,
(
B(i) + Span

({C(j)}j≤a+i−1

)) ∩ B �= ∅ ⇔
B(i) ∈

{
�x + Span

({C(j)}j≤a+i−1

)
: �x ∈ B} , (67)

where the size of the last set is upper bound by |B| ×
|Span

({C(j)}j≤a+i−1

) |. Since B(i) is chosen randomly out
of 2k strings,

qi ≤
|B| × |Span

({C(j)}j≤a+i−1

) |
2k

(68)

≤ 2a+i−1−k|B|, (69)

and using the binomial tail inequality (Property 13):

|B| =
�R�∑

q=0

(
k

q

)
≤ 2kH1(R/k) for

R

k
≤ 1

2
, (70)

we find

qi ≤ 2a+i−1−k+k(1− a+b
k −τ) = 2−b−τk+i−1, (71)

thus

Pr(dAB < R) ≤
b∑

i=1

qi = 2−b−τk
b−1∑

i=0

2i ≤ 2−τk. (72)

Therefore, the expected probability that dAB ≤ R is
smaller than 2−τk. Thus,

a + b

k
≤ 1−H1(

x

k
)−τ ⇒ Pr(dAB < x) ≤ 2−τk (73)

which concludes the proof of the lemma. �
This bound allows us to prove the following crucial

property:

Property 4. Let d̂w be the random variable giving the
minimum weight d̂w defined above. Then, given that n = n

for some positive integer n and l̂ ≥ l̂min,

Pr

(
d̂w

2
< (δ + τf )

1 − pR

2
n
∣∣∣ l̂ ≥ l̂min,

n = n, valid = True

)
≤ 2−τp l̂min . (74)

Proof. Given that n = n and l̂ = l̂ ≥ l̂min, note that the
random variable K̂ is uniformly distributed and indepen-
dent of other variables. Passing the validation test in the
protocol requires that the Constraint 9

m + r

l̂min

≤ 1 − H1

[
2(δ + τf )1−pR

2 n

l̂min

]
− τp (75)

is satisfied. Since the validation test is passed, espe-
cially equation (8), the argument of H1(x) satisfies
x < 1/2. Moreover, we have m+r

l̂
≤ m+r

l̂min
and 1 −

H1(
2(δ+τf )

1−pR
2 n

l̂
)−τp ≥ 1−H1(

2(δ+τf )
1−pR

2 n

l̂min
)−τp. There-

fore, the number of rows of F̂ and K̂ verify:

m + r

l̂
≤ 1 − H1

[
2(δ + τf )1−pR

2 n

l̂

]
− τp. (76)
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We can therefore apply the above lemma for A = F̂ , B =
K̂, k = l̂ and x = 2(δ + τf )(1 − pR)n/2. We obtain that:

Pr
(
d̂w < 2(δ + τf )

1 − pR

2
n
∣∣∣ l̂ = l̂ ≥ l̂min,

n = n, valid = True
)
≤ 2−τp l̂ (77)

or,

Pr
(

d̂w

2
< (δ + τf )

1 − pR

2
n
∣∣∣ l̂ ≥ l̂min,

n = n, valid = True
)

≤ 2−τpl̂min (78)

which concludes the proof of the property. �

5.4 Reduction to a modified situation

In this section, a modified situation of the original protocol
is defined. This modified situation does not correspond to
a key distribution, but nevertheless, a “key” is defined at
Alice’s side. Surprisingly, the “privacy” in the modified
situation implies the privacy of the original protocol, and
this implication is proved.

5.4.1 Equivalence with the modified protocol

We first describe the modified protocol which is similar
to the original protocol, except that Bob measures the
photons in the sifted set E in the wrong bases (therefore
Bob does not share the private key with Alice). We show
that the security of the modified protocol is equivalent to
the security of the original protocol.

In the subsequent discussion, we will consider — with-
out loss of generality as far as the security of the protocol
is concerned — that Bob’s choice of measurement bases �b
and the set R are provided by a randomising box at Bob’s
side: the box generates randomly a choice for R and for
�b at the beginning of the protocol. It then provides Bob
with the generated data as required by the protocol, that
is, it gives �b during step 2 and R at the step 4 to Bob. We
now define the intermediate protocol as follows. In the
intermediate protocol,

• Alice behaves exactly as in the original protocol;
• Bob’s randomising box generates R and �b as before,

but gives �̃b instead of �b to Bob at step 2, where:

b̃i
Def
=

{
bi if i ∈ R

¬bi if i /∈ R.
(79)

The box announces R to Bob at step 4 as in the original
protocol;

• Bob behaves exactly as in the original situation, except
that, in step 5, after he learned the choice for R, he
computes and announces �b rather than �̃b.

Therefore, in the modified protocol, Bob measures Alice’s
signals in the bases �̃b and announces �b. The underlying
idea is that the original and the modified protocols are
identical, except that Bob measures the signals indexed
in R in the wrong bases (without actually knowing R).
Consequently, Alice’s sifted key and Bob’s sifted key are
uncorrelated: Bob does not share the key with Alice. The
private key is only defined in Alice’s hand. Therefore, this
situation does not describe a key exchange. It is only an
abstract stepping stone towards the proof of unconditional
privacy, thanks to the following property:

Property 5. Whichever strategy a potential eavesdropper
Eve chooses, the random variable giving jointly Alice’s pri-
vate key and Eve’s view has the same probability distribu-
tion in both protocol.

Proof. In the following, we say that a random variable
in the original protocol and the corresponding random
variable in the modified protocol are indistinguishable if
and only if their probability distributions are identical. A
quantum system whose state is not a priori known is char-
acterised by an ensemble description. Given a system hav-
ing probability pi to be in the state ρi for i = 1, 2, . . . , k,
its ensemble description is the list {(pi, ρi)}i, that is, the
list of its possible states together with the correspond-
ing probabilities. We say that a quantum system in the
original protocol and the corresponding quantum system
in the modified protocol are indistinguishable if and only
if their ensemble descriptions are identical. Throughout
the proof of this property, we consider an arbitrary but
fixed strategy adopted by Eve. By strategy, we mean the
algorithm or the “program” followed by Eve to eaves-
drop. Therefore, if Eve is given the same input, she will
act identically. We have to prove that the data Eve ac-
cesses and the private key Alice gets in the original pro-
tocol and in the modified protocol are indistinguishable if
Eve follows this given strategy. Recall that in the origi-
nal protocol, Eve learns the values of D, R, �b, �h(D ∩ R),
P(T, d), �a, F , �s and K via the public discussions. Eve
may also attempt to eavesdrop the quantum channel. If a
pulse contains several photons, Eve might keep one pho-
ton and store it until bases are announced, thus obtain-
ing deterministically the corresponding bit. Eve may also
entangle a quantum probe P to Alice’s single photon sig-
nals, and measure P after public discussions. She might
also stop some single photon signals, leaving pulses in
vacuum state to Bob. Let (A, B, C, . . . , D) be a set of
random variables (and/or quantum systems) in the orig-
inal protocol. Let (A′, B′, C′, . . . , D′) be the set of cor-
responding random variables (and/or quantum systems)
in the modified protocol. Note that one can show that
the set (A, B, C, . . . , D) is indistinguishable from the set
(A′, B′, C′, . . . , D′) by showing successively that: A and
A′ are indistinguishable. Given A and A′ take the same
value (denoted as A = A′), B and B′ are indistinguish-
able. Given A = A′ and B = B′, C and C′ are indistin-
guishable, etc. Now:

• the choice for �a, �g, �b and R are indistinguishable in
both protocol. Given that the choice for �a, �g, �b and
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R takes the same values in both protocol, Alice an-
nounces the same �a in step 8 and Bob announces the
same �b and R in step 5;

• given that Alice’s choice for �a and �g take the same
value in both protocol, Alice’s quantum signals are in-
distinguishable in both protocol;

• given that Alice’s quantum signals are in the same
state in both protocols, Eve acts on them in the same
manner: the interaction of the quantum signals with
Eve’s apparatus and the probe P remains the same.
Thus the resulting quantum signals (disturbed and/or
suppressed by Eve) received by Bob are indistinguish-
able in both protocol. Likewise, the resulting states of
Eve’s apparatus and probe P are indistinguishable in
both protocol. Naturally, after the above coupling, the
density matrix describing P does not depend on Bob’s
choice of bases or outcomes of the measurements;

• we assumed that given a quantum signal, the probabil-
ity that Bob detects at least one photon in this signal
is independent of his choice of basis. Therefore, given
that Alice’s quantum signals are identical in both pro-
tocol, the set of detected signals in the modified pro-
tocol is indistinguishable from the set D of detected
signals in the original protocol. Given that the choice
for �b and R is the same in both protocol, since b̃i = bi

for i ∈ R, the measurement outcome hi in the modified
protocol is indistinguishable from the hi in the original
protocol, for i ∈ R. Therefore Bob’s announcement of
�h(R ∩D) in the modified protocol is indistinguishable
from its counterpart in the original protocol;

• as a result, the sets Ω, T and E computed by Alice in
the modified protocol are indistinguishable from the
corresponding sets computed in the original protocol;

• the above implies that the outcome of the test P(T, d)
is indistinguishable in both protocol;

• in both protocol, Alice’s choices for K and F are indis-
tinguishable. Given �g, E and F take the same value in
both protocol, Alice announces the same syndrome �s;

• the private data Eve wishes to discover is the private
key �κ = K�g(E) (mod 2) in both situation.

Therefore, the public announcements, Eve’s apparatus
and probe, and Alice’s private key are indistinguishable
in both protocol. Thus the random variables giving the
results Eve gets from measuring her apparatus and probe
are indistinguishable in both situation. This concludes the
proof. �

5.4.2 Further reduction

The previous section has shown that it is sufficient to
prove privacy of the modified protocol to prove that the
original protocol is secure. It turns out that it is simpler
to prove security for the modified protocol since Bob has
no information about the private key. The privacy of the
modified protocol can be proved even in the following sit-
uation where:

• Alice announces generously �g(E) after she announces
�a in step 8, and

• Bob announces generously �h(D) in step 3 (i.e. before
announcement of the revealed set R), instead of an-
nouncing �h(D ∩ R) in step 6.

Of course, this can only weaken the security of the mod-
ified protocol, and the security of the resulting protocol
implies the security of the original protocol.

Provided the randomising box is not corrupted and
the random choice of R and �b are announced honestly in
step 5 by the box, the security of the modified protocol
can be proved even if we furthermore assume that Bob is
corrupted by Eve. That is, Bob tells Eve the output �̃b of
the randomising box in step 2 and Eve and Bob together
make the measurement they want on the quantum signals
sent by Alice. Bob then announces D and �h(D) as told by
Eve in step 3. Thus we can regard the couple Eve-Bob as
a single enemy, provided that the randomising box is not
corrupted and that the public announcement of R and �b
in step 5 is made directly by the box.

Of course, �h(T ) should be close enough to �g(T ) so that
the couple Eve-Bob passes the test. The eavesdropping
fails if Alice declares ¬P(T, d). After the public discussion,
Eve may execute another measurement on the residual
state of the photons to refine her information.

5.4.3 Reduction related to multiple photon signals

We now present a reduction related to the multiple photon
signals. By assuming that the enemy has full knowledge
about the multiple photon signals prior to any public an-
nouncement, this reduction will allow us to work with a
simpler situation in which the enemy is performing a con-
ditional measurement on single photon signals only.

Since Eve has no technological limitation, we must as-
sume that Eve-Bob have perfect detectors. We also con-
sider the worst case scenario in which Eve replaces the
quantum channel by a perfect one. Therefore, Eve-Bob
are cheating when the set D containing all signals in which
Bob officially detected at least one photon is not equal to
S ∪ M . Eve-Bob choose the set D at their convenience,
while ensuring that the observed transmission rate n/N
is not significantly lower than the expected transmission
rate. Now, if Alice emits a signal of index i with several
photons, Eve-Bob may pick up one photon from the sig-
nal and measure it in basis b̃i, giving the outcome hi.
Then they measure the remaining photons in the pulse in
the other basis ¬b̃i, yielding a result h′

i. The bit hi al-
lows Eve-Bob to pass the test for the index i, if i ∈ T .
After announcement of Alice’s basis ai, Eve-Bob knows
whether ai = b̃i or ai = ¬b̃i. In either case, Eve-Bob learn
deterministically gi (since gi = hi if ai = b̃i and gi = h′

i

if ai = ¬b̃i). That is, for any signal i emitted with sev-
eral photons, Eve-Bob can learn deterministically gi while
passing the test for the index i with certainty, if i ∈ T .
In order to take into account this extra knowledge gained
by Eve-Bob from the multi-photon signals, we consider a
slightly worse scenario. We henceforth assume that:
• in addition to sending the photon pulses exactly as de-

scribed previously, Alice’s source tells secretly Eve-Bob
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the partition Σ = (V, S, M), the number of photons ni

in each pulse i in M (collectively denoted by �n(M)),
Alice’s bases �a(M) and Alice’s bits �g(M). These se-
cret announcements are made at the same time as the
source emits the quantum signals and we denote them
collectively by M = (Σ,�n(M),�a(M), �g(M)).

Again, this assumption can only weaken the security of
the protocol. Now given M, Eve-Bob can re-create the
signals sent by Alice on M . That is, provided Eve-Bob
learn M, we can assume that Eve-Bob receive only photon
pulses that are in S, without modifying the security of the
protocol.

To summarise, the security of the original key distri-
bution protocol is implied by the security of the modified
protocol in which Bob is corrupted by Eve and in which:

• M = (Σ,�n(M),�a(M), �g(M)) are given secretly to
Eve-Bob during step 2;

• Eve-Bob receive only photon pulses that are in S;
• Eve-Bob must announce publicly �h(D) in step 3;
• Bob’s randomising box is not corrupted and announces

publicly R and �b honestly in step 5.

5.5 Mathematical model of eavesdropping
in the modified situation

We define the view of Eve-Bob as the set of all data Eve-
Bob acquired during the modified protocol. The random
variable describing this view is denoted by v, and takes
value in the set of all possible view values, Z. Following
our model, the view v has the following form:

v = (M, D,�h(D), R, P , j) (80)

where

• M = (Σ,�n(M),�a(M),�g(M)) is the random vari-
able giving collectively the secret announcements of
Alice’s source (Σ = (V , S, M)),

• P = (�a,�g(E), F , K,�s) is the random variable giving
collectively Alice’s public announcements, and

• j is the random variable giving collectively the rest
of classical data Eve-Bob obtain by performing mea-
surements on the quantum signals. The structure of j
depends, of course, on Eve-Bob’s attack.

Note that from the beginning Eve-Bob learn �̃b from the
random number generating box. Since the privacy results
in the modified situation will not depend on �̃b, we will
consider �̃b as a parameter of the protocol, known by ev-
erybody. This is why the corresponding random variable
is omitted from v.

We now present the formalism to describe the whole
situation just after Eve-Bob learn M from the source,
that is before they determine D. Just after Eve-Bob get
an outcome M = M, the situation is modeled as follows.

The system as seen by Eve-Bob is described in a
Hilbert space Hsys = HC ⊗ HS where HC is the Hilbert
space describing the classical data �a, �g, R, F , K processed

by Alice or the randomising box and HS is the Hilbert
space describing single photon signals in S.

We will denote by c = (�a,�g, R, F , K) the random
variable giving collectively �a, �g, R, F , K. Each possible
value c = (�a,�g, R, F, K) for c is represented by a state
(i.e. a normalised vector)

∣∣ c
〉 ∈ HC such that the set

{∣∣ c〉}c forms an orthonormal basis of HC . The Hilbert
space HS is HS = ⊗i∈SHphoton. The single photon polar-
isation Hilbert space Hphoton has been defined previously.

For any quantum system described in a Hilbert space
H, the state of the system is fully defined by a Hermi-
tian non negative matrix ρ of unit trace called the density
operator. When the system has probability pi to be in
the state

∣∣Ψi

〉
for i = 1, 2, . . . , k (we say the system is

in a statistical mixture of states), then the corresponding
density operator is ρ =

∑k
i=1 pi

∣∣Ψi

〉〈
Ψi

∣∣. The result of
a general measurement on a system described in H can
be seen as an outcome of a random variable q where q is
the measured physical quantity. A general measurement q
on a system described in a Hilbert space H is described
by a positive operator valued measure (POVM henceforth)
{(q, Fq)}q∈Q where Q is the set of all possible outcomes
for q. It is a set of Hermitian non negative operators Fq

on H such that
∑

q∈Q Fq = 1H. Then the probability that
the measurement yields a particular value q is given by

Pq(q) = Tr(Fqρ) (81)

where ρ is the density operator of the system. For any
q ∈ Q, the Hermitian nonnegative operator Fq is called the
positive operator associated with the outcome q. A more
detailed description of the general measurement formalism
can be found in [24].

This formalism can be applied to our system Hsys =
HC ⊗ HS . However, we need to describe c as classically
encoded variable. This is done by adding the following
restrictions to the above formalism:

• any state in HC ⊗HS should be described as a mixture
of states in the canonical or the computational basis of
HC , i.e. its density matrix must be of the form:

ρsys =
∑

c

Pc(c)
∣∣ c
〉〈

c
∣∣⊗ ∣∣Φc

〉〈
Φc

∣∣ (82)

where computational basis means that no other ba-
sis than the canonical one {∣∣�a,�g, R, F, K

〉}c should be
used (i.e. we shall not use basis containing cat-state

vectors such as
∣∣ c1

〉
+
∣∣ c2

〉
√

2
). The probability Pc(c) is

the probability of occurrence of c;
• any positive operator describing a general measure-

ment on HC ⊗HS should be of the form:

ΠC ⊗ EQ (83)

where ΠC (acting on HC) is some projection operator
on the computational basis of HC (i.e. on the subspace
spanned by some set of vectors of the canonical basis).
In other words,

ΠC =
∑

c∈A

∣∣ c
〉〈

c
∣∣ (84)
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for some set A of values c may take. The set A corre-
sponds to the set of values c that are compatible with
the outcome associated with the positive operator.
The operator EQ (acting on HS) is some positive oper-
ator in HS . This model allows global measurement in
which two-way classical communication between Alice
and Eve-Bob occurs. This is necessary since variables
such as E, and P(T , d) depend on Bob’s announce-
ments.

In our model, Eve-Bob execute two measurements on the
system. The first one, allowing to find D, �h(D) given M
but before public announcement occurs, the second one,
allowing Eve-Bob to refine their information once P is
known.

However, technically, it is more convenient to think
that Eve-Bob execute one single POVM measurement on
the whole product space HC ⊗ HS . This POVM should
obey certain constraints reflecting the fact that D and
�h(D) should be measured before the public announce-
ments by Alice and the box.

Let’s now describe more precisely the density matrix
of the system and the POVM associated with various pos-
sible measurements during the protocol.

Once Eve-Bob have learned the value taken by M, the
density matrix of the system as seen by Eve-Bob reads,
prior to any further measurement,

ρ|M=M =
∑

c∈CM

Pc |M=M(c)
∣∣ c
〉〈

c
∣∣

⊗ ∣∣Ψ(�g(S),�a(S))
〉〈

Ψ(�g(S),�a(S))
∣∣ (85)

where

CM
Def
= {c′ = (�a′, �g′, R′, F ′, K ′) :

�a′(M) = �a(M), �g′(M) = �g(M)} , (86)
∣∣Ψ(�g(S),�a(S))

〉 Def
= ⊗i∈S

∣∣Ψ(gi, ai)
〉

(87)

(in the definition of CM, �a(M) and �g(M) are given by M).
The subscript “|M = M” stands for “given M = M”.
The probability distribution of Pc |M=M is normalised for
each possible value for the size of E, that is, for each possi-
ble value for the number of columns in the matrices F and
K (recall that the size of the parity check matrix and the
privacy amplification matrix is given by the set E). This
is to ensure that the sum of probabilities of all outcomes
c = (�a,�g, R, F, K) that are compatible with |E| = n is
equal to unity, for any possible value n. In other words,∑

F and K have n columns Pc |M=M(c) = 1.
Eve-Bob learn the outcome of M which is part of the

view v. The remaining part of the view is provided by a
single generalised measurement defined by the POVM

{(
v, Ev|M=M

)}
v∈ZM

(88)

where ZM is the set of views giving M for the announce-
ment regarding the multiple photon signals. We have seen
that for any v ∈ ZM, Ev|M=M reads

Ev|M=M = ΠC
v|M=M ⊗ EQ

v|M=M (89)

where ΠC
v|M=M is the projection onto the span of states∣∣ c

〉 ∈ HC for all c compatible with the view v.
Now �a, R, F and K are given explicitly by v (of course,

the number of columns in F and K is |E| where E is given
by v). The view v tells as well that �g(M) = �g(M) (secret
announcement of Alice’s source), �g(E) = �g(E) (announce-
ment of �g(E)) and F�g(E) = F�g(E) = �s (announcement
of �s, and note that F and E are given by v). Therefore,
the set of all values for c compatible with v is
{
(�a, �y, R, F, K) : �y ∈ C�s,�g(E∪M)

}
where

C�s,�g(E∪M) =
{
�x ∈ {0, 1}N : �x(E ∪ M) = �g(E ∪ M)

and F�x(E) = �s (mod 2)} (90)

that is,

ΠC
v|M=M =

∑

�x∈C�s,�g(E∪M)

∣∣�a, �x, R, F, K
〉〈

�a, �x, R, F, K
∣∣.

(91)
Suppose now that at the end of the protocol, and after
Eve-Bob get the view v, Alice announces the key �κ. Then
the POVM associated to this situation reads

E(v,�κ)|M=M = ΠC
(v,�κ)|M=M ⊗ EQ

v|M=M (92)

where EQ
v|M=M remains the same, since the additional

data come from Alice’s announcement only, after the at-
tack. The set of all values for c compatible with (v,�κ) in
this situation is
{
(�a, �y, R, F, K) : �y ∈ C�s,�κ,�g(E∪M)

}
where

C�s,�κ,�g(E∪M) =
{
�x ∈ {0, 1}N : �x(E ∪ M) = �g(E ∪ M)

and F�x(E) = �s (mod 2) and K�x(E) = �κ (mod 2)
}

.

(93)

Therefore,

ΠC
(v,�κ)|M=M =

∑

�x∈C�s,�κ,�g(E∪M)

∣∣�a, �x, R, F, K
〉〈

�a, �x, R, F, K
∣∣.

(94)
Of course, Alice will not announce publicly �κ during the
protocol. The above POVM has just been derived so that
we can compute Pv�κ(v,�κ), the probability that Eve-Bob
get the view v and that the key takes the value �κ.

Finally, we can assume that for any v, the positive
operators EQ

v|M=M are of the rank one, i.e.

EQ
v|M=M =

∣∣φv

〉〈
φv

∣∣ (95)

where
∣∣φv

〉
are some vectors in HS . The vectors

∣∣φv

〉
are

in general neither normalised nor orthogonal. The reasons
for this assumption follows: suppose a positive operator
EQ

v0|M=M has a rank greater than one, namely:

Ev0|M=M =
∑

i∈I

∣∣ ηi

〉〈
ηi

∣∣ (96)
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where the vectors
∣∣ ηi

〉 ∈ HS are possibly not normalised
(such decomposition is always possible since Ev0|M=M is
Hermitian positive). I is a set of size greater than 1. Then
the modified POVM

{(v, Ev|M=M)}v �=v0 ∪ {((v0, i), ΠC
v0|M=M ⊗ ∣∣ ηi

〉〈
ηi

∣∣)}i∈I

(97)
gives more precise information than the original POVM.
This justifies our assumption.

Finally, we examine the constraint on the POVM
{(v, Ev|M=M

)}v∈ZM related to the fact that given M,
Eve-Bob must determine D and �h(D ∩ M) (�g(M) is al-
ready known and Eve-Bob do not commit error on M)
prior to Alice’s public announcements. We have seen that
Eve-Bob may choose the set D at their convenience. Since
signals in M give perfect information about Alice’s bits
and signals in V give no information at all, we assume
that Eve-Bob follow the optimal strategy by choosing D
such that:

M ⊂ D and D ∩ V = ∅. (98)

Now, since M, D and �h(D ∩ M) are parts of the view v,
we can define the POVM
{(

(M,D,�h(D ∩ M)), ED,�h(D∩M)|M=M
)}

D : M⊂D,D∩V =∅

with ED,�h(D∩M)|M=M =
∑

v gives D,�h(D∩M)

Ev|M=M

(99)

which is the positive operator associated with the outcome
(D,�h(D ∩ M)) = (D,�h(D ∩ M)) given that M = M.
When Eve-Bob make a measurement to determine D and
�h(D∩M), the only data they have about c are �a(M) and
�g(M). Therefore,

ED,�h(D∩M)|M=M = ΠC
M ⊗ EQ

D,�h(D∩M)|M=M (100)

where EQ

D,�h(D∩M)|M=M is some positive operator acting
on HS and

ΠC
M =

∑

c∈CM

∣∣ c
〉〈

c
∣∣. (101)

To recapitulate, for any positive real number e > 0, the
test P(A, e) on a subset A of D is modeled as follows:

• Eve-Bob get an outcome M = M for the multiple
photon signals, thanks to Alice’s source;

• given M = M Eve-Bob determine the value taken by
D and �h(D ∩ M) thanks to the POVM

{(
(M,D,�h(D ∩ M)), ED,�h(D∩M)|M=M =

ΠC
M ⊗ EQ

D,�h(D∩M)|M=M

)}

D : M⊂D,D∩V =∅
; (102)

• Eve-Bob do not commit any error on A ∩ M .

5.6 Bound on the conditional entropy of the key
in the modified situation

In this section, we derive the bound on the conditional
entropy of the key in the modified situation. Throughout
this section, we consider a given eavesdropping strategy
chosen by Eve-Bob that fits the model we gave previously.

The structure of the proof follows. We define the subset
P of views in which Eve-Bob succeed to pass the valida-
tion test (recall that in our protocol, the outcome of the
validation test is publicly announced). We define two sub-
sets L and R of P . The subset L is the set of views for
which the associated positive operators obey a certain con-
straint. This constraint is related to the fact that it is very
unlikely that Eve-Bob pass the validation test while they
have a substantial knowledge about Alice’s sifted key: in-
deed, if a quantum signal is in the revealed set R, Eve-Bob
want to learn the outcome of the measurement in the basis
indicated by the randomising box. If it is not in R, then
Eve-Bob want to learn the measurement’s outcome in the
conjugate basis (since b̃i = ¬bi if i /∈ R). The trouble for
Eve-Bob is that they do not know R before they have to
announce their bits �h(D) and this can be translated in the
form of the above constraint. The second subset R corre-
sponds to the set of views in which probabilistic properties
we have seen previously actually hold. We prove useful
identities on R that are necessary in the subsequent part
of the proof. We then prove that: (1) when the view is in
the intersection of R and L, Alice’s private key is almost
uniformly distributed and independent of Eve-Bob’s view,
and (2) this intersection covers almost completely the set
P of views passing the test. Then conclusive calculations
lead to the privacy of the protocol.

The following lemma will be useful in this section.

Lemma 2. Let the density matrix of the system be of the
form:

ρsys =
∑

c

Pc(c)
∣∣ c
〉〈

c
∣∣⊗ ∣∣Φc

〉〈
Φc

∣∣ (103)

where {∣∣Φc

〉}c is an orthonormal set of vectors in HS,
and let a positive operator acting on Hsys be of the form:

F =

(
∑

c∈A

∣∣ c
〉〈

c
∣∣
)

⊗ FQ (104)

where A is some set of values for c. Then for any operators
V and W acting on HS,

Tr (FV ρsysW ) = Pc(A)Tr
(
FQV ρsys,AW

)
(105)

provided Pc(A) > 0, where

Pc(A) =
∑

c′∈A

Pc(c′) and (106)

ρsys,A =
1

Pc(A)

∑

c∈A

Pc(c)
∣∣Φc

〉〈
Φc

∣∣. (107)
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Proof. We have:

Tr(FV ρsysW ) =
∑

c∈A

∑

c′
Pc(c′) |〈c|c′〉|2︸ ︷︷ ︸

δc,c′

× Tr(FQV
∣∣Φc′
〉〈

Φc′
∣∣W ) (108)

where δX,X′ =
{

0 if X �= X ′
1 if X = X ′

=
∑

c∈A

Pc(c)Tr(FQV
∣∣Φc

〉〈
Φc

∣∣W ) (109)

= Tr
(
FQV

∑

c∈A

Pc(c)
∣∣Φc

〉〈
Φc

∣∣W
)
. (110)

Now if Pc(A) =
∑

c′∈A Pc(c′) > 0, then

Tr(FV ρsysW ) =

Pc(A)Tr
(
FQV

1
Pc(A)

∑

c∈A

Pc(c)
∣∣Φc

〉〈
Φc

∣∣

︸ ︷︷ ︸
=ρsys,A

W
)
. (111)

The factor Pc(A) has been only introduced so that ρsys,A

is normalised:

Tr(ρsys,A) =
1

Pc(A)

∑

c∈A

Pc(c)Tr(
∣∣Φc

〉〈
Φc

∣∣)
︸ ︷︷ ︸

=1∀c

= 1. (112)

This concludes the proof. �

5.6.1 Small sphere property

In this section we define L, the set of views passing the
test and for which the associated positive operators obey
a certain constraint. We then prove that L covers almost
completely P .

Definition 2. The set P is defined as the set of all views
of Eve in which the validation test is passed.

P := {v ∈ Z : valid = true} . (113)

Definition 3. For any view

v = (M,D,�h(D), R, P, j) ∈ Z (114)

where M = (Σ,�n(M),�a(M), �g(M)) and P =
(�a,�g(E), F, K,�s), define the partial view z as

z = (M,D,�h(D ∩ M),�a, R) part of v. (115)

The partial view describes the data Eve-Bob have after
receiving M and after measurement of D and �h(D ∩ M),
followed by announcements of (�a, R) by Alice and the
randomising box. Recall that Eve-Bob do not make any
mistake on M thanks to Alice’s source, and that they
need only to get �h(D ∩ M) using the POVM (102).
Given any partial view z = (M,D,�h(D ∩ M),�a, R), de-
fine Π0(z) as the orthogonal projection operator onto

Span({
∣∣∣Ψ(�j,�̃b)

〉
|dE∩M (�j,�h) ≥ d2}) where d2 = (δ +

τf )(1 − pR)n/2 and where E, M and �h(D ∩M) are given
by the partial view z. We have restricted to E ∩ M and
T ∩ M because Eve-Bob do not commit any error on M .
We prove now the following property (referred to as the
small sphere property in [3]).

Property 6. Let the subset of views L ⊂ P be defined by:

L Def
=
{

v ∈ P :

PM(M)Tr
[
Ev|M=MΠ0(z)ρ|M=MΠ0(z)

]

≤
√

g(δ, τf , pR, n)Pv(v)
}

, (116)

where

g(δ, τf , pR, n) =

exp

[
− 1

2δ + τf
τ2
f

p2
R

4
rminN + 2

(
τf

2δ + τf

)2
]

. (117)

Then the probability weight of L is lower bounded by:

Pv(L) ≥ Pv(P) −
√

g(δ, τf , pR, n). (118)

Proof. Define Zrmin ⊂ Z as the subset of views for
which the size of D satisfies the first condition of the
validation test, i.e. n > rminN or Zrmin = {v ∈ Z :
|D| > rminN where D is given by v.}. Likewise, define
Wrmin as the subset of partial views z for which the
size of D satisfies the condition n > rminN , that is
Wrmin = {z : |D| > rminN}. We can assume that
Pv(Zrmin) and Pz(Wrmin) are strictly positive. Otherwise,
since P is in Zrmin , this would imply Pv(P) = 0 which
implies trivial security of the protocol. Define the positive
operator Π1(z) as the orthogonal projection operator onto

Span({
∣∣∣Ψ(�j,�̃b)

〉
|dT∩M (�j,�h) ≥ d1}) where d1 = δ pR

2 n,

and where T , M and �h(D ∩ M) are given by z as before.
We also define Π1(z) as Π1(z) = 1− Π1(z).

We first prove that the set of views Q defined by:

Q Def
=
{

v ∈ Zrmin :

PM(M)Tr
[
Ev|M=MΠ1(z)Π0(z)ρ|M=MΠ0(z)Π1(z)

]

≤
√

g(δ, τf , pR, n)Pv(v)
}

. (119)

has probability bounded from below by:

Pv(Q) ≥
(

1 −
√

g(δ, τf , pR, n)
)

Pv(Zrmin). (120)

Let’s assume that we are given that D = D for some
set D. The starting point is the following: as mentioned
already, Eve-Bob do not know Alice’s bases �a nor the
choice of R during the quantum transmission. This means
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that in a fictional situation F in which the single photons
sent by Alice are in the state

∣∣∣Ψ(�g(S),�̃b(S))
〉

instead of
|Ψ(�g(S),�a(S))〉 (the classically stored �a remains however
unchanged), Property 1 holds for the subsets T and E of
D. Let C be the random variable giving the set of discrep-
ancies between Alice’s bits �g(D) and Bob’s bits �h(D) on
D. Then in such a situation, the error set C is independent
of Ω and R. This implies that T and E are independent
of C. Using Property 1 for S = D, A = T , B = E and C
with pA = pT = pR/2, pB = pE = (1 − pR)/2 (the factor
1/2 is the probability that ai = b̃i (for T ) and ai �= b̃i (for
E) respectively), we have

Pr
(P(T , d1) ∧ ¬P(E, d2

)|F , D = D) ≤

f

(
δ, τf ,

pR

2
,
1 − pR

2
, n

)
. (121)

Multiplying the above relation by PD(D) and summing
for all D that satisfy |D| > rminN , one gets:

Pr
(
(n > rminN) ∧ P(T , d1) ∧ ¬P(E, d2

)|F) ≤
g(δ, τf , pR, n)Pv(Zrmin) (122)

remarking that f(δ, τf , pR/2, (1 − pR)/2, rminN) =
g(δ, τf , pR, n) and that Pv(Zrmin) =∑

D : |D|>rminN PD(D).
But the lhs above reads:

Pr
(
(n > rminN) ∧ P(T , d1) ∧ ¬P(E, d2)|F

)
=

∑

c

∑

z′∈Wrmin

Pc(c)PM | c=c(M′)Pz | F ,c=c,M=M′(z′)

× Pr(P(T , d1) ∧ ¬P(E, d2)|F , c = c, z = z′) (123)

where M′ is given uniquely by the partial view z′ =
(M′,D′,�h′(D′ ∩ M ′). Note that c and M are indepen-
dent of the event F .

It is easy to see from (102) that, given M = M, the
POVM associated with the partial view z ∈ WM (where
WM is the set of partial views that are compatible with
M = M) is:

{
z = (M,D,�h(D ∩ M),�a, R), Ez|M=M =

ΠC
M,�a,R ⊗ EQ

D,�h(D∩M)|M=M

}

z∈WM
(124)

where

ΠC
M,�a,R =

∑

F ′,K′,�g′ :�g′(M)=�g(M)

∣∣�a,�g′, R, F ′, K ′〉〈�a,�g′, R, F ′, K ′ ∣∣

(125)

is the projection onto states giving �a, �g(M) and R for
Alice’s choice of bases, Alice’s bits on M and the ran-
domising box’s choice for the revealed set, respectively.

Using this POVM, we have:

Pz | F ,c=c,M=M′(z′) = Tr
[
Ez′|M=M′

∣∣ c
〉〈

c
∣∣

⊗ Ψ(�g(S′),�̃b(S′))〉〈Ψ(�g(S′),�̃b(S′)|] (126)

= Tr
[
ΠC

M′,�a′,R′ ⊗ EQ

D′,�h′(D′∩M ′)|M=M′

∣∣ c
〉〈

c
∣∣

⊗ ∣∣Ψ(�g(S′),�̃b(S′))
〉〈

Ψ(�g(S′),�̃b(S′))
∣∣] (127)

= δ�a,�a′δR,R′δ�g(M ′),�g′(M ′)

× Tr
[
EQ

D′,�h′(D′∩M ′)|M=M′ |Ψ(�g(S′),�̃b(S′))|〉

× 〈Ψ(�g(S′),�̃b(S′))|] (128)

where S′, M ′ and �g′(M ′) are given by M′, �a′, R′, D′ and
�h′(D′ ∩ M ′) are given by z′ and �a, R and �g are given by
c. We recall that M′ is part of z′.

Since Eve-Bob do not commit any error on M ,

Pr(P(T , d1) ∧ ¬P(E, d2)|F , c = c, z = z′)

= Pr(P(T ∩ M , d1) ∧ ¬P(E ∩ M , d2)|F , c=c, z=z′)
(129)

= Pr(dT ′∩M ′(�g,�h′) < d1 and dE′∩M ′(�g,�h′) ≥ d2) (130)

= Tr
(

Π1(z′)Π0(z′)
∣∣Ψ(�g(S′),�̃b(S′))

〉〈
Ψ(�g(S′),�̃b(S′))

∣∣

× Π0(z′)Π1(z′)
)

(131)

where the sets T ′, E′ and M ′ are uniquely given by the
partial view z′.

Note that

Π1(z′)Π0(z′)
∣∣Ψ(�g(S′),�̃b(S′))

〉

× 〈Ψ(�g(S′),�̃b(S′))
∣∣Π0(z′)Π1(z′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣Ψ(�̃b(S′), �g(S′))
〉〈

Ψ(�̃b(S′), �g(S′))
∣∣

if dT ′∩M ′(�g,�h′) < d1 and dE′∩M ′(�g,�h′) ≥ d2

0 otherwise.
(132)

Therefore, the above term can be integrated in the other
trace so that:

Pr
(
(n > rminN) ∧ P(T , d1) ∧ ¬P(E, d2)|F)

=
∑

c

∑

z′∈Wrmin

PcM(c,M′)δ�a,�a′δR,R′δ�g(M ′),�g′(M ′)

× Tr
[
EQ

D′,�h′(D′∩M ′)|M=M′Π1(z′)Π0(z′)
∣∣Ψ(�g(S′),�̃b(S′))

〉

× 〈Ψ(�g(S′),�̃b(S′))
∣∣Π0(z′)Π1(z′)

]
(133)
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but

PcM(c,M′) = PM(M′)Pc |M=M′(c) (134)

= PM(M′)P�g(S′)(�g(S′))

× P�a�g(S′)RF K|M=M′(�a,�g(S′), R, F, K)
(135)

=
1

2|S′| PM(M′)

× P�a�g(S′)RF K|M=M′(�a,�g(S′), R, F, K)

(136)

since �g(S′) is uniformly distributed and independent of
M , �a, �g(S′), R, F and K. Recall that Σ is not chosen
by Eve-Bob, but randomly by the source. Therefore,

Pr
(
(n > rminN) ∧ P(T , d1) ∧ ¬P(E, d2)|F

)
=

∑

z′∈Wrmin

∑

�a,�g(S′),R,F,K

PM(M′)

× P�a�g(S′)RF K|M=M′(�a,�g(S′), R, F, K)

× δ�a,�a′δR,R′δ�g(M ′),�g′(M ′)

× Tr
[
EQ

D′,�h′(D′∩M ′)|M=M′Π1(z′)Π0(z′)
∑

�g(S′)

1
2|S′|

× ∣∣Ψ(�g(S′),�̃b(S′))
〉〈

Ψ(�g(S′),�̃b(S′))
∣∣Π0(z′)Π1(z′)

]
.

(137)

The important point to remark is that

∑

�g(S′)

1
2|S′|
∣∣Ψ(�g(S′),�̃b(S′))

〉〈
Ψ(�g(S′),�̃b(S′))

∣∣ = 1S′

2|S′|

=
∑

�g(S′)

1
2|S′|
∣∣Ψ(�g(S′),�a(S′))

〉〈
Ψ(�g(S′),�a(S′))

∣∣. (138)

Therefore, setting back the sum over �g(S′) and writing
back the trace over classical spaces in the original form,

we obtain:

Pr
(
(n > rminN) ∧ P(T , d1) ∧ ¬P(E, d2)|F

)

=
∑

c

∑

z′∈Wrmin

PcM(c,M′)δ�a,�a′δR,R′δ�g(M ′),�g′(M ′)

×Tr
[
EQ

D′,�h′(D′∩M ′)|M=M′Π1(z′)Π0(z′)

×∣∣Ψ(�g(S′),�a(S′))
〉〈

Ψ(�g(S′),�a(S′))
∣∣Π0(z′)Π1(z′)

]

(139)

=
∑

z′∈Wrmin

∑

c∈CM′

PcM(c,M′)︸ ︷︷ ︸
=PM(M′)Pc | M=M′(c)

Tr
[
Ez′|M=M′

∣∣ c
〉

×〈c ∣∣⊗ Π1(z′)Π0(z′)
∣∣Ψ(�a(S′), �g(S′))

〉

×〈Ψ(�a(S′), �g(S′))
∣∣Π0(z′)Π1(z′)

]
(140)

=
∑

z′∈Wrmin

PM(M′)Tr
[
Ez′|M=M′Π1(z′)

×Π0(z′)ρ|M=M′Π0(z′)Π1(z′)
]
, or, (141)

=
∑

z∈Wrmin

PM(M)Tr
[
Ez|M=MΠ1(z)

×Π0(z)ρ|M=MΠ0(z)Π1(z)
]
, (142)

where M is given by z.
But Ez|M=M =

∑
v gives z Ev|M=M and we get

Pr
(
(n > rminN) ∧ P(T , d1) ∧ ¬P(E, d2)|F

)

=
∑

v∈Zrmin

PM(M)Tr
[
Ev|M=MΠ1(z)

× Π0(z)ρ|M=MΠ0(z)Π1(z)
]

(143)

where M and z are given by v, and recalling the inequal-
ity (122), we get

∑

v∈Zrmin

PM(M)Tr
[
Ev|M=MΠ1(z)

× Π0(z)ρ|M=MΠ0(z)Π1(z)
] ≤ g(δ, τf , pR, n)Pv(Zrmin).

(144)

At this point we use the following lemma.

Lemma 3. Let µ be a strictly positive real number. Let
y be a random variable taking values in a set Y. Let
{ay}y∈Y be a set of |Y| real nonnegative numbers such
that

∑
y∈Y ay ≤ µ. Let q be a strictly positive number. If

we define the subset X ⊂ Y by

X = {y ∈ Y : ay ≤ µqPy(y)} (145)

Then Py(X ) ≥ 1 − 1/q.

Proof. Assume to the contrary that the set S = Y \ X =
{y ∈ Y : ay > µqPy(y)} has probability Py(S) greater
than 1/q. Then
∑

y

ay ≥
∑

y∈S

ay > µq
∑

y∈S

Py(y) = µqPy(S) ≥ µ. (146)
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Therefore
∑

y ay > µ which is a contradiction. This con-
cludes the proof. �

Define the set of views Q as:

Q Def
=
{

v ∈ Zrmin :

PM(M)Tr
[
Ev|M=MΠ1(z)Π0(z)ρ|M=MΠ0(z)Π1(z)

]

≤
√

g(δ, τf , pR, n)Pv(v)
}

. (147)

Then applying the above lemma for µ =
g(δ, τf , pR, n)Pv(Zrmin), q = 1/

√
g(δ, τf , pR, n) and

the probability distribution on Zrmin given by the
conditional distribution Pv(v)/Pv(Zrmin), we find that

Pv(Q) ≥
(

1 −
√

g(δ, τf , pR, n)
)

Pv(Zrmin). (148)

Thus, for any view v ∈ Q ∩ P , we have:

PM(M)Tr
[
Ev|M=MΠ1(z)Π0(z)ρ|M=MΠ0(z)Π1(z)

]

≤
√

g(δ, τf , pR, n)Pv(v). (149)

However, since v ∈ P we also have:

PM(M)Tr(Ev|M=MΠ1(z)Π0(z)ρ|M=MΠ0(z)Π1(z))

(150)
= PM�aRF K(M,�a, R, F, K)P�g(C�s,�g(E∪M))

× Tr
[
EQ

v|M=MΠ1(z)Π0(z)
1

|C�s,�g(E∪M)|
×

∑

�x∈C�s,�g(E∪M)

∣∣Ψ(�x,�a)
〉〈

Ψ(�x,�a)
∣∣Π0(z)Π1(z)

]
(151)

using Lemma 2, and since for any �x ∈ C�s,�g(E∪M) (note
that ai = b̃i for i ∈ T ),

Π1(z)
∣∣Ψ(�x,�a)

〉〈
Ψ(�x,�a)

∣∣Π1(z) =
∣∣Ψ(�x,�a)

〉〈
Ψ(�x,�a)

∣∣
(152)

(that is, z = (M,D,�h(D∩M),�a, R) verifies dT∩M (�h, �x) <

d1 for any �x ∈ C�s,�g(E∪M)). Note that Π0(z) and Π1(z)
commute. Thus we have:

∀v ∈ Q ∩ P
PM(M)Tr(Ev|M=MΠ1(z)Π0(z)ρ|M=MΠ0(z)Π1(z))

= PM(M)Tr(Ev|M=MΠ0(z)ρ|M=MΠ0(z)) (153)

≤ Pv(v)
√

g(δ, τf , pR, n) (154)

since Π0(z) acts only on HE∩M . This proves that Q ∩
P ⊂ L. Therefore the probability of L is bounded from
below by:

Pv(L) ≥ Pv(Q ∩P) (155)

≥ Pv(P) − Pv(Q ∩ Zrmin) (156)

≥ Pv(P) −
√

g(δ, τf , pR, n), (157)

which concludes the proof of the small sphere property.�

5.6.2 Identities on R
Here we define another big subset of P , corresponding to
the set of views in which probabilistic assumptions such
as l̂ ≥ l̂min, d̂w ≥ 2(δ + τf )(1 − pR)n/2 holds. We require
as well that for any v ∈ R, Pv(v) > 0. Formally,

R = {v ∈ P : v verifies

l̂ ≥ l̂min,

d̂w ≥ 2(δ + τf )
1 − pR

2
n,

Pv(v) > 0} (158)

remembering that l̂, l̂min and d̂w are all uniquely defined
by Eve-Bob’s view v.

In the last section of this proof, a bound on the prob-
ability of the set of views R∩P will be needed. We have,
using Properties 3 and 4,

Pv(R ∩P) ≤ Pr(l̂ ≤ l̂min ∧ n > rminN)

+ Pr
( d̂w

2
< (δ + τf )

1 − pR

2
n ∧ l̂ ≥ l̂min ∧ n > rminN

)

(159)

≤ e−2τ2
MN + e−2τ̂2(rminN−Mmax)

+ 2−τp( 1−pR
2 −τ̂)(rminN−Mmax). (160)

We now prove the following properties on R, i.e. for

v = (M,D,�h(D), R, P, j) ∈ R (161)

where M = (Σ,�n(M),�a(M), �g(M)), Σ = (V, S, M) and
P = (�a,�g(E), F, K,�s). This implies for instance that d̂w

verifies d̂w ≥ 2(δ+τf )(1−pR)n/2 in this section. It might
be useful to realise that the following properties are ex-
actly equivalent to the properties proved in the original
paper [3] in which the sifted keys �g(E) and �h(E) are re-
placed by the single-photon encoded sifted keys �g(E ∩M)
and �h(E ∩ M).

Property 7.

∀v ∈ R, ∀�κ ∈ {0, 1}m, |C�s,�g(E∪M)| = 2m|C�s,�κ,�g(E∪M)|.
(162)

Proof. We remark that:

C�s,�g(E∪M) = {�x ∈ {0, 1}N :

�x(E ∪ M) = �g(E ∪ M) and

F̂ �x(E ∩ M) = �s + F̌�g(E ∩ M) (mod 2)} (163)

(+ and − are equivalent in arithmetics modulo 2), and

C�s,�κ,�g(E∪M) = {�x ∈ {0, 1}N :

�x(E ∪ M) = �g(E ∪ M) and

F̂ �x(E ∩ M) = �s + F̌�g(E ∩ M) (mod 2),

K̂�x(E ∩ M) = �κ + Ǩ�g(E ∩ M) (mod 2)}. (164)
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Now, for v ∈ R, d̂w > 0, that is, rows of K̂ are lin-
early independent and each row of K̂ is linearly inde-
pendent of rows of F̂ . Therefore K̂�x(E ∩ M) = �κ +
Ǩ�g(E ∩ M) (mod 2) introduces m additional linearly in-
dependent constraints in C�s,�g(E∪M). Thus |C�s,�g(E∪M)| =
2m|C�s,�κ,�g(E∪M)|. �

Property 8. For any �κ ∈ {0, 1}m and v ∈ R, the mutual
probability of the outcome (v,�κ) reads:

Pv�κ(v,�κ) =
1

2m
PMP R(M, P, R)

〈
φ̃v

∣∣ρ̃�s,�κ,�g(E∪M)

∣∣ φ̃v

〉

(165)
where

• PMP R(M, P, R) =
∑

�x∈C�s,�g(E∪M)
PM(M)

P�a�gRF K |M=M(�a, �x, R, F, K) is the probability
that Alice announces P = (�a,�g(E), F, K,�s), the box
announces R and Eve-Bob get M thanks to the photon
number splitting attack;

• |Ψ(�g(A),�a(A))〉 = ⊗i∈A |Ψ(gi, ai)〉 ∈ HA for any set
A ⊂ S, where HA stands for the Hilbert space describ-
ing the photons in A;

• ρ̃�s,�κ,�g(E∪M) = 1
|C�s,�κ,�g(E∪M)|

∑
�x∈C�s,�κ,�g(E∪M)

∣∣Ψ(�x(E ∩
M),�a(E ∩ M))

〉〈
Ψ(�x(E ∩ M),�a(E ∩ M))

∣∣;
• ∣∣ φ̃v

〉
= 〈Ψ(�g(E ∪ M),�a(E ∪ M))

∣∣φv

〉 ∈ HE∩M .

Note that in the above notation, M, P , R, C�s,�g(E∪M) and
C�s,�κ,�g(E∪M) are all given by v.

Property 9. For any view v ∈ R and for any operators
V and W acting on the restricted space HE∩M ⊂ HS,

PM(M)Tr(Ev|M=MV ρ|M=MW ) =

PMPR(M, P, R)
〈
φ̃v

∣∣V ρ̃�s,�g(E∪M)W
∣∣ φ̃v

〉
(166)

where

• ρ̃�s,�g(E∪M) = 1
|C�s,�g(E∪M)|

∑
�x∈C�s,�g(E∪M)

∣∣Ψ(�x(E ∩
M),�a(E ∩ M))

〉〈
Ψ(�x(E ∩ M),�a(E ∩ M))

∣∣
• and other elements defined as previously.

Proof. Using Lemma 2 for ρ|M=M, E(v,�κ)|M=M and
Ev|M=M, we get (recall that M is given by v)

Pv�κ(v,�κ) = PM(M)Pv�κ |M=M(v,�κ) (167)
= PM(M)Tr(E(v,�κ)|M=Mρ|M=M) (168)
= PM(M)P�aRF K |M=M(�a, R, F, K)

×P�g(C�s,�κ,�g(E∪M))Tr(EQ
v|M=Mρ�s,�κ,�g(E∪M))

(169)

where

ρ�s,�κ,�g(E∪M) =
1

P�g(C�s,�κ,�g(E∪M))

×
∑

�x∈C�s,�κ,�g(E∪M)

P�g(�x)
∣∣Ψ(�x,�a)

〉〈
Ψ(�x,�a)

∣∣

(170)

and

PM(M)Tr(Ev|M=MV ρ|M=MW )

= PM(M)P�aRF K | M=M(�a, R, F, K)

× P�g(C�s,�g(E∪M))Tr(EQ
v|M=MV ρ�s,�g(E∪M)W ) (171)

where

ρ�s,�g(E∪M) =
1

P�g(C�s,�g(E∪M))

×
∑

�x∈C�s,�g(E∪M)

P�g(�x)
∣∣Ψ(�x,�a)

〉〈
Ψ(�x,�a)

∣∣. (172)

Now V and W act only on HE∩M and for any �x ∈
C�s,�g(E∪M) or C�s,�κ,�g(E∪M), �x(E ∪ M) = �g(E ∪ M). Thus
〈
Ψ(�x,�a)

∣∣X
∣∣φv

〉
=
〈
Ψ(�x(E ∩ M),�a(E ∩ M))

∣∣X
∣∣ φ̃v

〉

(173)
where X is V or W . Noting that P�g is uniform, for
any �x, we have P�g(�x)/P�g(C�s,�g(E∪M)) = 1/|C�s,�g(E∪M)|
and P�g(�x)/P�g(C�s,�κ,�g(E∪M)) = 1/|C�s,�κ,�g(E∪M)|. Finally we
use the identities P�g(C�s,�κ,�g(E∪M)) = 1

2m P�g(C�s,�g(E∪M))
and PM(M)P�aRF K |M=M(�a, R, F, K)P�g(C�s,�g(E∪M)) =
PMPR(M, P, R). This concludes the proof. �

It follows that the marginal probability of v ∈ R reads:

Pv(v) = PM(M)Tr(Ev|M=Mρ|M=M)

= PMPR(M, P, R)
〈
φ̃v

∣∣ρ̃�s,�g(E∪M)

∣∣ φ̃v

〉
. (174)

Finally, for any ket
∣∣χ
〉 ∈ HE∩M , for any �κ ∈ {0, 1}m, we

denote by rv,�κ(
∣∣χ
〉
) the ratio:

rv,�κ(
∣∣χ
〉
) =

〈
χ
∣∣ρ̃�s,�κ,�g(E∪M)

∣∣χ
〉

〈
χ
∣∣ρ̃�s,�g(E∪M)

∣∣χ
〉 (175)

whenever
〈
χ
∣∣ρ̃�s,�g(E∪M)

∣∣χ
〉

> 0 and rv,�κ(
∣∣χ
〉
) = 1 other-

wise.
It is easy to see that, for any view v ∈ R, any key �κ

and any ket
∣∣χ
〉 ∈ HE∩M such that

〈
χ
∣∣ρ̃�s,�g(E∪M)

∣∣χ
〉

> 0

∑

�κ∈{0,1}m

rv,�κ(
∣∣χ
〉
) =

〈
χ
∣∣∑

�κ∈{0,1}m ρ̃�s,�κ,�g(E∪M)

∣∣χ
〉

〈
χ
∣∣ρ̃�s,�g(E∪M)

∣∣χ
〉

(176)
= 2m (177)

where we have used the identity
∑

k∈{0,1}m ρ̃�s,�κ,�g(E∪M) =
2mρ̃�s,�g(E∪M) which follows directly from Property 7.
The identity

∑
�κ∈{0,1}m rv,�κ(

∣∣ ξ
〉
) = 2m holds for〈

χ
∣∣ρ̃�s,�g(E∪M)

∣∣χ
〉

= 0 as well.

5.6.3 Quasi-independence of the key and the view on R∩L
We are going to prove in this section that the probability
of the joint event in which Eve-Bob get the view v and
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Alice gets the key �κ reads, provided v ∈ R ∩ L,

Pv�κ(v,�κ) = πv + ηv,�κ (178)

where πv is independent of �κ and an upper bound is found
on |ηv,�κ|.

For any view v ∈ R and any key value �κ ∈ {0, 1}m, we
have seen that (Property 8),

Pv�κ(v,�κ) =
1

2m
PMPR(M, P, R)

〈
φ̃v

∣∣ρ̃�s,�κ,�g(E∪M)

∣∣ φ̃v

〉
.

(179)
Let Πw(z) be the orthogonal projection onto the subspace

Hw = Span
{ ∣∣∣Ψ(�j,�̃b)

〉 ∣∣ dE∩M (�j,�h) ≥ d̂w

2

} ⊂ HS . The

minimum weight d̂w has been defined in Section 5.3. As
before, the partial view z is specified by the view v. Let
Πw(z) = 1 − Πw(z). Then Πw(z) and Πw(z) act non
trivially only on HE∩M , and

〈
φ̃v

∣∣ρ̃�s,�κ,�g(E∪M)

∣∣ φ̃v

〉
=
〈
φ̃v

∣∣(Πw(z) + Πw(z))

× ρ̃�s,�κ,�g(E∪M)(Πw(z) + Πw(z))
∣∣ φ̃v

〉
. (180)

Therefore,

Pv�κ(v,�κ) =

1
2m

PMPR(M, P, R)
[〈

φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉

+
〈
φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)

∣∣ φ̃v

〉
+
〈
φ̃v

∣∣ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉

− 〈φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉]
. (181)

We show that the first term in the rhs in equation (181)
corresponds to the term independent of �κ and we derive
a bound on the modulus of the remaining terms in the
following parts.

The term independent of the key

Property 10. For any view v in R ∩ L, the first term
in the rhs of (181) is independent of �κ. This term will be
denoted by πv subsequently, for any v ∈ R ∩ L. That is,

πv
Def
=

1
2m

PMPR(M, P, R)

× 〈φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉
. (182)

Proof. We need the following identity:

Lemma 4.

∀�α, �β ∈ {0, 1}l̂, (183)
〈
Ψ(�α,�̃b(E ∩ M))

∣∣ρ̃�s,�κ,�g(E∪M)

∣∣∣Ψ(�β,�̃b(E ∩ M))
〉

=

1

2l̂
×
{

0 if (�α + �β) /∈ Ĝ
(−1)(�α+�β)·�θ if (�α + �β) ∈ Ĝ.

(184)

where �θ is a vector in {0, 1}l̂ such that Ĝ�θ =
(

�s
�κ

)
+

Ǧ�g(E ∩ M) (�θ exists since |C�s,�κ,�g(E∪M)| > 0 for v ∈ R).

We recall that Ĝ has been defined in Section 5.3.

Proof of the lemma. First we need some definitions. For
y ∈ {0, 1} and for a ∈ {+,×}, define the unitary operator
Ua

y acting on a single photon Hilbert space:

∀x ∈ {0, 1}, Ua
y

∣∣Ψ(x, a)
〉

=
∣∣Ψ(x + y, a)

〉
. (185)

It is easy to verify that on the opposite basis Ua
y acts as:

Ua
y

∣∣Ψ(x,¬a)
〉

= (−1)xy
∣∣Ψ(x,¬a)

〉
. (186)

Likewise, for �y ∈ {0, 1}l̂ define the unitary operator
U

�a(E∩M)
y acting on HE∩M as:

∀�x ∈ {0, 1}l̂, U
�a(E∩M)
�y

∣∣Ψ(�x,�a(E ∩ M))
〉

=
∣∣Ψ(�x + �y,�a(E ∩ M))

〉
. (187)

It is easy to see that U
�a(E∩M)
�y is involutive, that is

U
�a(E∩M)−1
�y = U

�a(E∩M)
�y . Since b̃i = ¬ai for i ∈ E ∩M , we

have, using equation (186),

∀�x, U
�a(E∩M)
�y

∣∣Ψ(�x,�̃b(E ∩ M))
〉

=

(−1)�x·�y
∣∣Ψ(�x,�̃b(E ∩ M))

〉
. (188)

Returning to our proof, we express ρ̃�s,�κ,�g(E∪M) (defined in

Property 9), recalling that Ĝ =
(

F̂

K̂

)
. Furthermore, we

use the fact that for any �y ∈ {0, 1}l̂,

Ĝ�y =
(

�s
�κ

)
+ Ǧ�g(E ∩ M) ⇔ �y ∈ �θ + Ĉ (189)

where θ is a vector in {0, 1}l̂ such that Ĝ�θ =
(

�s
�κ

)
+

Ǧ�g(E ∩ M) (such �θ exists since C�s,�κ,�g(E∪M) �= ∅). This
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gives, recalling that Ĉ =
(
Ĝ
)⊥

,

ρ̃�s,�κ,�g(E∪M) =

1
|C�s,�κ,�g(E∪M)|

∑

�x∈{0,1}N |
�x(E∪M)=�g(E∪M)

Ĝ�x(E∩M)=(�s
�κ)+Ǧ�g(E∩M)

∣∣Ψ(�x(E∩M),�a(E∩M))
〉

× 〈Ψ(�x(E ∩ M),�a(E ∩ M))
∣∣ (190)

=
1

|C�s,�κ,�g(E∪M)|
∑

�y∈�θ+Ĉ

∣∣Ψ(�y,�a(E∩M))
〉〈

Ψ(�y,�a(E∩M ))
∣∣

(191)

=
1

|C�s,�κ,�g(E∪M)|

×
∑

�y∈Ĉ

∣∣Ψ(�y + �θ,�a(E ∩ M))
〉〈

Ψ(�y + �θ,�a(E ∩ M))
∣∣,

(192)

and, using equation (188), for all �α, �β ∈ {0, 1}l̂,
〈
Ψ(�α,�̃b(E ∩ M))

∣∣ρ̃�s,�κ,�g(E∪M)

∣∣Ψ(�β,�̃b(E ∩ M))
〉

=
〈
Ψ(�α,�̃b(E ∩ M))

∣∣ 1
|C�s,�κ,�g(E∪M)|

×
∑

�y∈Ĉ
U

�a(E∩M)
�θ

∣∣Ψ(�y,�a(E ∩ M))
〉

×〈Ψ(�y,�a(E ∩ M))
∣∣U�a(E∩M)

�θ

∣∣Ψ(�β,�̃b(E ∩ M))
〉

(193)

= (−1)(�α+�β)·�θ〈Ψ(�α,�̃b(E ∩ M))
∣∣ρ0

∣∣Ψ(�β,�̃b(E ∩ M))
〉
,

(194)

where

ρ0 =
1

|C�s,�κ,�g(E∪M)|
×
∑

�y∈Ĉ

∣∣Ψ(�y,�a(E ∩ M))
〉〈

Ψ(�y,�a(E ∩ M))
∣∣. (195)

Let q = dim Ĉ, and {�θ1, . . . �θq} be a basis of Ĉ. Let Ĉ(j) be
the span of {�θ1, . . . �θj} for j ∈ {1, . . . q}. For j ∈ {1, . . . q},
define ρ(j) as:

ρ(j) =
1
2j

∑

�x∈Ĉ(j)

∣∣Ψ(�x,�a(E∩M))
〉〈

Ψ(�x,�a(E∩M))
∣∣. (196)

We show by induction on j ∈ {0, . . . q} that

∀�α, �β ∈ {0, 1}l̂,
〈
Ψ(�α,�̃b(E ∩ M))

∣∣ρ(j)
∣∣Ψ(�β,�̃b(E ∩ M))

〉
=

{
1/2l̂ if �α + �β ∈ Ĉ(j)⊥

0 if �α + �β /∈ Ĉ(j)⊥ . (197)

For j = 0, we have Ĉ(0) = {�0} and Ĉ(0)⊥ = {0, 1}l̂ and
ρ(0) =

∣∣Ψ(�0,�a(E ∩ M))
〉〈

Ψ(�0,�a(E ∩ M))
∣∣. Thus

∀�α, �β,
〈
Ψ(�α,�̃b(E ∩ M))

∣∣ρ(0)
∣∣Ψ(�β,�̃b(E ∩ M))

〉
=

1

2l̂
,

(198)
and (197) holds (Recall ai = ¬b̃i on E ∩ M).

Suppose (197) holds for some j ∈ {0, . . . q − 1}. Since
Ĉ(j+1) = Ĉ(j) ∪ (�θj+1 + Ĉ(j)), we have

ρ(j+1) =
1
2

(
1
2j

∑

�x∈Ĉ(j)

∣∣Ψ(�x,�a(E ∩ M))
〉〈

Ψ(�x,�a(E ∩ M))
∣∣

+
1
2j

∑

�x∈�θj+1+Ĉ(j)

∣∣Ψ(�x,�a(E∩M ))
〉〈

Ψ(�x,�a(E∩M ))
∣∣
)

(199)

=
1
2

(
ρ(j) + U

�a(E∩M)
�θj+1

ρ(j)U
�a(E∩M)
�θj+1

)
. (200)

Thus,

∀�α, �β,
〈
Ψ(�α,�̃b(E ∩ M))

∣∣ρ(j+1)
∣∣Ψ(�β,�̃b(E ∩ M))

〉

=
1
2
〈
Ψ(�α,�̃b(E ∩ M))

∣∣ρ(j)
∣∣Ψ(�β,�̃b(E ∩ M))

〉

× (
1 + (−1)(�α+�β)·�θj+1

)
︸ ︷︷ ︸

=

⎧
⎨

⎩
2 if �α + �β ∈ �θ⊥j+1

0 if �α + �β /∈ �θ⊥j+1.

. (201)

And since (197) holds for j, we get

〈
Ψ(�α,�̃b(E ∩ M))

∣∣ρ(j+1)
∣∣Ψ(�β,�̃b(E ∩ M))

〉
=

{
1/2l̂ if �α + �β ∈ Ĉ(j+1)⊥,

0 if �α + �β /∈ Ĉ(j+1)⊥.
(202)

which concludes our induction. Noting that Ĉ(q) = Ĉ, |Ĉ| =
|C�s,�κ,�g(E∪M)|, Ĉ⊥ = Ĝ, and ρ(q) = ρ0, for any �α, �β ∈
{0, 1}l̂,

〈
Ψ(�α,�̃b(E ∩ M))

∣∣ρ̃�s,�κ,�g(E∪M)

∣∣Ψ(�β,�̃b(E ∩ M))
〉

=

1

2l̂
×
{

0 if (�α + �β) /∈ Ĝ
(−1)(�α+�β)·�θ if (�α + �β) ∈ Ĝ.

(203)

which concludes the proof of the lemma. �

Now by definition of Ĝ, for any vector �γ ∈ Ĝ, there
exists a vector �λ�γ ∈ {0, 1}r+m such that

�λT
�γ Ĝ = γ (204)
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and the above property reads:

〈
Ψ(�α,�̃b(E ∩ M))

∣∣ρ̃�s,�κ,�g(E∪M)

∣∣Ψ(�β,�̃b(E ∩ M))
〉

=

1

2l̂
×
⎧
⎨

⎩
0 if (�α + �β) /∈ Ĝ
(−1)

�λ(�α+�β)·
((

�s

�κ

)
+Ǧ�g(E∩M)

)

if (�α + �β) ∈ Ĝ.

(205)

To see that the first term in (181) is independent of �κ,
recalling the definition of Πw(z), write

〈
φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉

=
∑

�α,�β∈{0,1}l̂|
w(�α−�h(E∩M))<d̂w/2

w(�β−�h(E∩M))<d̂w/2

〈φ̃v

∣∣Ψ(α,�̃b(E ∩ M))
〉

×〈Ψ(α,�̃b(E ∩ M))
∣∣ρ̃�s,�κ,�g(E∪M)

∣∣Ψ(β,�̃b(E ∩ M))
〉

×〈Ψ(β,�̃b(E ∩ M))
∣∣φ̃v〉 (206)

and the �α’s and the �β’s contributing to the above sum
obey

w(�α + �β) ≤ w(�α − �h(E ∩ M)) + w(�β − �h(E ∩ M)) < d̂w

(207)
thus �α+ �β /∈ Ĝ∗ (the set Ĝ∗ has been defined in Sect. 5.3).
The �α and �β of the terms contributing in the sum are such
that their sum is in Ĝ (according to the previous lemma)
but not in Ĝ∗. Since (by definition of Ĝ∗) for �α+�β ∈ Ĝ\Ĝ∗,
�λ�α+�β is of the form

(
�z
�0

)
where �z ∈ {0, 1}r, the terms

〈φ̃v

∣∣Ψ(α,�̃b(E ∩ M)
〉

× 〈Ψ(α,�̃b(E ∩ M)
∣∣ρ̃�s,�κ,�g(E∪M)

∣∣Ψ(β,�̃b(E ∩ M))
〉

× 〈Ψ(β,�̃b(E ∩ M))
∣∣φ̃v〉

=
1

2l̂
(−1)

�λ
�α+�β

·((�s
�κ)+Ǧ�g(E∩M))

× 〈φ̃v

∣∣∣Ψ(�α,�̃b(E ∩ M))
〉 〈

Ψ(�β,�̃b(E ∩ M))
∣∣φ̃v〉 (208)

contributing in the above sum (i.e. for �α + �β ∈
Ĝ \ Ĝ∗) does not depend on �κ. Therefore〈
φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉
does not depend

on �κ. Now PMPR(M, P, R) is independent of �κ since the
m rows of K̂ are linearly independent between themselves
and linearly independent of the rows of F̂ (since d̂w > 0
on R by definition (Eq. (158))).

Therefore, the term in the rhs of (182) is independent
of �κ. This concludes the proof of the property. �

The deviation from the key-independent term

We now derive an upper bound on |P�κv(�κ, v) − πv|.
Property 11. For any v ∈ R∩L and �κ ∈ {0, 1}m, define
ηv,�κ as

ηv,�κ
Def
= Pv�κ(v,�κ) − πv. (209)

The modulus of ηv,�κ is then upper bounded for any v ∈
R∩ L and any �κ ∈ {0, 1}m by

|ηv,�κ| ≤ 1
2m

Pv(v)
(
rv,�κ(Πw(z)

∣∣ φ̃v

〉
) + rv,�κ(

∣∣ φ̃v

〉
)
)

×
[
2

√√
g(δ, τf , pR, n) +

√
g(δ, τf , pR, n)

]
. (210)

Proof. For any v ∈ R∩L and �κ ∈ {0, 1}m, we have from
equation (181),

ηv,�κ = Pv�κ(v,�κ) − πv (211)

=
1

2m
PMPR(M, P, R)

[〈
φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)

∣∣ φ̃v

〉

+
〈
φ̃v

∣∣ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉

−〈φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉]
. (212)

Remarking that the second term in the bracket is only the
complex conjugate of the first term, we have

|ηv,�κ| ≤ 1
2m

PMPR(M, P, R)

×
[
2
∣∣∣
〈
φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)

∣∣ φ̃v

〉∣∣∣

+
〈
φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉]
. (213)

Now, the first term in the bracket verifies
∣∣∣
〈
φ̃v

∣∣Πw(z)ρ̃1/2

�s,�κ,�g(E∪M)
ρ̃
1/2

�s,�κ,�g(E∪M)

∣∣ φ̃v

〉∣∣∣

≤
∥∥∥ρ̃1/2

�s,�κ,�g(E∪M)
Πw(z)

∣∣ φ̃v

〉∥∥∥×
∥∥∥ρ̃1/2

�s,�κ,�g(E∪M)

∣∣ φ̃v

〉∥∥∥
using the Schwartz inequality and the fact
ρ̃�s,�κ,�g(E∪M) is Hermitian non negative (214)

=
√〈

φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉

×
√〈

φ̃v

∣∣ρ̃�s,�κ,�g(E∪M)

∣∣ φ̃v

〉
. (215)

Now recalling the definition of rv,�κ, we have
〈
φ̃v

∣∣ρ̃�s,�κ,�g(E∪M)

∣∣ φ̃v

〉
= rv,�κ

[∣∣ φ̃v

〉]〈
φ̃v

∣∣ρ̃�s,�g(E∪M)

∣∣ φ̃v

〉

(216)
since

〈
φ̃v

∣∣ρ̃�s,�g(E∪M)

∣∣ φ̃v

〉
> 0, for any v ∈ R (recall that

Pv(v) = PMPR(M, P, R)
〈
φ̃v

∣∣ρ̃�s,�g(E∪M)

∣∣ φ̃v

〉
). And

〈
φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉
=

rv,�κ

[
Πw(z)

∣∣ φ̃v

〉]〈
φ̃v

∣∣Πw(z)ρ̃�s,�g(E∪M)Πw(z)
∣∣ φ̃v

〉
(217)
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(recall that if
〈
φ̃v

∣∣Πw(z)ρ̃�s,�g(E∪M)Πw(z)
∣∣ φ̃v

〉
= 0 then

〈
φ̃v

∣∣Πw(z)ρ̃�s,�κ,�g(E∪M)Πw(z)
∣∣ φ̃v

〉
= 0 as well).

The latter can be bounded using the small sphere prop-
erty (Property 6). If v ∈ R ∩ L,

PM(M)Tr(Ev|M=MΠ0(z)ρ|M=MΠ0(z))

= PMPR(M, P, R)
〈
φ̃v

∣∣Π0(z)ρ̃�s,�g(E∪M)Π0(z)
∣∣ φ̃v

〉

(218)

≤ Pv(v)
√

g(δ, τf , pR, n). (219)

Now for z ∈ R, d̂w/2 > d2, thus ImΠw(z) ⊂ Im Π0(z)
(refer to the beginning of Section 5.6.1), that
is Πw(z) projects onto a space contained in
the space on which Π0(z) projects. In other

words, Span{
∣∣∣Ψ(�j,�̃b)

〉
|dE∩M (�j,�h) ≥ d̂w/2} ⊂

Span{
∣∣∣Ψ(�j,�̃b)

〉
|dE∩M (�j,�h) ≥ d2}.

Since ρ̃�s,�g(E∪M) is Hermitian non negative, it implies
that

〈
φ̃v

∣∣Πw(z)ρ̃�s,�g(E∪M)Πw(z)
∣∣ φ̃v

〉 ≤
〈
φ̃v

∣∣Π0(z)ρ̃�s,�g(E∪M)Π0(z)
∣∣ φ̃v

〉
. (220)

Therefore, using Property 6, we have, ∀�κ ∈ {0, 1}m, ∀v ∈
R ∩ L,

PMPR(M, P, R)
〈
φ̃v

∣∣Πw(z)ρ̃�s,�g(E∪M)Πw(z)
∣∣ φ̃v

〉 ≤

Pv(v)
√

g(δ, τf , pR, n). (221)

Linking the results (213, 215, 216, 217, 221) together, we
obtain

∀�κ ∈ {0, 1}m, ∀v ∈ R ∩ L,

|ηv,�κ| ≤ 1
2m

PMPR(M, P, R)

×
[
2

√
Pv(v)

PMPR(M, P, R)

√
g(δ, τf , pR, n)rv,�κ

(
Πw(z)

∣∣ φ̃v

〉)

×
√

rv,�κ

(∣∣ φ̃v

〉)〈
φ̃v

∣∣ρ̃�s,�g(E∪M)

∣∣ φ̃v

〉

+
Pv(v)

PMPR(M, P, R)

√
g(δ, τf , pR, n)rv,�κ(Πw(z)

∣∣ φ̃v

〉
)

]

(222)

and using
〈
φ̃v

∣∣ρ̃�s,�g(E∪M)

∣∣ φ̃v

〉
= Pv(v)/PMP R(M, P, R),

we get

|ηv,�κ| ≤ 1
2m

[
2

√√
g(δ, τf , pR, n)

×
√

rv,�κ

(
Πw(z)

∣∣ φ̃v

〉)
rv,�κ

(∣∣ φ̃v

〉)

+
√

g(δ, τf , pR, n)rv,�κ

(
Πw(z)

∣∣ φ̃v

〉)
]
Pv(v) (223)

≤ 1
2m

max
({

rv,�κ

(
Πw(z)

∣∣ φ̃v

〉)
, rv,�κ

(∣∣ φ̃v

〉)})

×
[
2

√√
g(δ, τf , pR, n) +

√
g(δ, τf , pR, n)

]
Pv(v)

(224)

≤ 1
2m

[
rv,�κ

(
Πw(z)

∣∣ φ̃v

〉)
+ rv,�κ

(∣∣ φ̃v

〉)]

×
[
2

√√
g(δ, τf , pR, n) +

√
g(δ, τf , pR, n)

]
Pv(v).

(225)

This concludes our proof. �

5.6.4 Bound on the conditional entropy

In this section we conclude the privacy proof by deriving
from the previous result the following property.

Property 12. The conditional Shannon entropy of the
key �κ given Eve’s view v is lower bounded by

H(�κ|v) ≥ m − ε1(N, m) (226)

where

ε1(N, m) = 2
(

m +
1

ln 2

)
h(δ, τf , pR, n)

+ 2

√

2
(

m +
1

ln 2

)
mh(δ, τf , pR, n)

+ m
(
Pv(R∩ P) + Pv(L ∩ P)

)
(227)

and

h(δ, τf , pR, n) = 2

√√
g(δ, τf , pR, n)

+
√

g(δ, τf , pR, n) as defined previously. (228)

Proof. We first prove that for any strictly positive real
number q and for any view v ∈ R ∩ L, there exists a set
Kv ⊂ {0, 1}m such that

• |Kv| ≥ 2m(1 − 1
q ), and

• ∀�κ ∈ Kv,
∣∣∣∣P�κ |v=v(�κ) − 1

2m

∣∣∣∣ ≤
1

2m
(2q+2)h(δ, τf , pR, n). (229)
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From that we prove the bound on the conditional entropy
(Eq. (226)).

For any view v ∈ R ∩ L, summing over �κ ∈ {0, 1}m

the joint probability P�κv(�κ, v) = πv + ηv,�κ, we get, using
Property 10

∀v ∈ R ∩ L,
∑

�κ∈{0,1}m

P�κv(�κ, v) = Pv(v) = 2mπv +
∑

�κ∈{0,1}m

ηv,�κ

(230)

but
∣∣∣∣∣
∑

�κ

ηv,�κ

∣∣∣∣∣ ≤
∑

�κ

|ηv,�κ| (231)

≤ 1
2m

Pv(v)h(δ, τf , pR, n)

×
(
∑

�κ

rv,�κ

(
Πw(z)

∣∣ φ̃v

〉)
+
∑

�κ

rv,�κ

(∣∣ φ̃v

〉)
)

(232)
≤ 2Pv(v)h(δ, τf , pR, n) (233)

using Property 11 and the identity (177).
Therefore,

|Pv(v) − 2mπv| ≤ 2Pv(v)h(δ, τf , pR, n) (234)

that is

|P�κv(�κ, v) − 1
2m

Pv(v)|

≤ |P�κv(�κ, v) − πv| + |πv − 1
2m

Pv(v)| (235)

≤ 1
2m

Pv(v)h(δ, τf , pR, n)

×
[
rv,�κ

(
Πw(z)

∣∣ φ̃v

〉)
+ rv,�κ

(∣∣ φ̃v

〉)
+ 2
]

(236)

or

|P�κ |v=v(�κ) − 1
2m

| ≤ 1
2m

h(δ, τf , pR, n)

×
[
rv,�κ

(
Πw(z)

∣∣ φ̃v

〉)
+ rv,�κ

(∣∣ φ̃v

〉)
+ 2
]
. (237)

Let av,�κ = rv,�κ(Πw(z)
∣∣ φ̃v

〉
)+rv,�κ(

∣∣ φ̃v

〉
). Then using again

identity (177), we have
∑

�κ∈{0,1}m

av,�κ = 2m+1. (238)

Let q be a strictly positive real number. Let U be a random
variable taking value in {0, 1}m with uniform probability
distribution, i.e. ∀�κ ∈ {0, 1}m, PU (�κ) = 1/2m. Then us-
ing Lemma 3 for U with µ = 2m+1, we find that

PU (Kv) ≥ 1 − 1
q

(239)

where the set Kv is defined by:

Kv =
{

�κ ∈ {0, 1}m : av,�κ < 2m+1q
1

2m
= 2q

}
. (240)

In other words,

|Kv| ≥ 2m

(
1 − 1

q

)
. (241)

Let I be the set defined by

I = ∪v∈R∩LKv × {v} ⊂ {0, 1}m ×Z. (242)

It follows that

∀(�κ, v) ∈ I,

∣∣∣∣P�κ |v=v − 1
2m

∣∣∣∣ ≤
1

2m
(2q+2)h(δ, τf , pR, n),

(243)
and

P�κv(I) =
∑

v∈R∩L
Pv(v)P�κ |v=v(Kv) (244)

=
∑

v∈R∩L

[
Pv(v)

∑

�κ∈Kv

P�κ |v=v(�κ)

]
(245)

≥
∑

v∈R∩L

[
Pv(v)

∑

�κ∈Kv

1
2m

(1 − (2q + 2)

×h(δ, τf , pR, n))

]
(246)

≥
(

1− 1
q

)
(1−(2q + 2)h(δ, τf , pR, n)) Pv(R∩ L)

(247)

≥
(

1 − 1
q

)
(1 − (2q + 2)h(δ, τf , pR, n))

× (Pv(P) − Pv(R∩ P) − Pv(L ∩ P)
)

(248)

≥ Pv(P) − Pv(R∩ P) − Pv(L ∩ P)

−1
q
− (2q + 2)h(δ, τf , pR, n). (249)

Now,

H(�κ|v) = −
∑

�κ,v

P�κv(�κ, v) log2 P�κ |v=v(�κ) (250)

= −
∑

�κ,v∈P
P�κv(�κ, v) log2 P�κ |v=v(�κ)

−
∑

�κ,v∈P
P�κv(�κ, v) log2 P�κ |v=v(�κ). (251)

For any v ∈ P and �κ ∈ {0, 1}m, we have P�κ |v=v(�κ) =
1/2m since Alice chooses randomly and independently the
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value for �κ when the validation test is not passed. There-
fore,

H(�κ|v) = mPv(P) −
∑

�κ,v∈P
P�κv(�κ, v) log2 P�κ |v=v(�κ)

(252)

≥ mPv(P) −
∑

(�κ,v)∈I
P�κv(�κ, v) log2 P�κ |v=v(�κ)

(253)

since for any v and �κ, − log2 P�κ |v=v(�κ) is nonnegative.
Using the relation:

∀(�κ, v) ∈ I, P�κ |v=v(�κ) =
1

2m
(1 + ξ�κ,v) (254)

where ξ�κ,v ≤ (2q + 2)h(δ, τf , pR, n) for any (�κ, v) ∈ I, we
get

H(�κ|v) ≥ m
(
Pv(P) + P�κv(I)

)

−
∑

(�κ,v)∈I
P�κv(�κ, v) log2(1 + ξ�κ,v) (255)

≥ m
(
1 − Pv(R∩ P) − Pv(L ∩ P)

−1
q
− (2q + 2)h(δ, τf , pR, n)

)

− 1
ln 2

(2q + 2)h(δ, τf , pR, n) (256)

= m −
(

m +
1

ln 2

)
(2q + 2)h(δ, τf , pR, n)

−m

q
− m(Pv(R∩ P) + Pv(L ∩ P)) (257)

where we used equation (249) and the inequality log2(1 +
x) ≤ |x|/ ln 2 for any x > −1.

The above inequality holds for any positive real num-
ber q ≥ 1. Especially it holds for

q =
√

m

2
(
m + 1

ln 2

)
h(δ, τf , pR, n)

(258)

obtained by maximising the rhs in Eq. (257). We therefore
obtain the bound on the conditional Shannon entropy of
the key �κ given the view v

H(�κ|v) ≥ m − ε1(N, m) (259)

where

ε1(N, m) = 2
(

m +
1

ln 2

)
h(δ, τf , pR, n)

+2

√

2
(

m +
1

ln 2

)
mh(δ, τf , pR, n)

+m
(
Pv(R∩ P) + Pv(L ∩ P)

)
. (260)

This concludes the proof of privacy. �
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Appendix A: Binomial tail inequalities

The following properties have been used throughout this
paper.

Property 13. Let α be a positive number such that 0 ≤
α ≤ 1/2. Then

∑

0≤i≤αn

(
n

i

)
≤ 2H1(α)n (261)

where H1(α) = −α log2 α−(1−α) log2(1−α) is the binary
entropy function.

Property 14. Let p, t be positive number such that 0 <
p ≤ p + t < 1. Then

∑

(p+t)n≤i≤n

(
n

i

)
pi(1 − p)n−i ≤ e−2t2n. (262)

Property 15. Let p, t be positive number such that 0 <
p − t ≤ p < 1. Then

∑

0≤i≤(p−t)n

(
n

i

)
pi(1 − p)n−i ≤ e−2t2n. (263)

Property 16. Let A be a set of size |A|. Let B be a set.
Suppose each element of A is contained in B with proba-
bility p. Let τ be a positive number such that 0 < p − τ <
p < p+ τ < 1 . Then the probability that B contains more
than (p + τ)|A| elements of A (i.e. |A ∩ B| ≥ (p + τ)|A|)
is bounded by

Pr(|A ∩ B| ≥ (p + τ)|A|) ≤ exp[−2τ2|A|]. (264)

Likewise, the probability that B contains less than (p −
τ)|A| elements of A is bounded by

Pr(|A ∩ B| ≤ (p − τ)|A|) ≤ exp[−2τ2|A|]. (265)

Proof. [25] Suppose 0 ≤ p ≤ p+ t ≤ 1, q = 1− p. For any
x ≥ 1, we have

∑

k≤i≤n

(
n

i

)
piqn−i ≤

∑

k≤i≤n

(
n

i

)
piqn−ixi−k

≤
∑

0≤i≤n

(
n

i

)
piqn−ixi−k

=
1
xk

(q + px)n

≤ 1
x(p+t)n

(q + px)n
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where k = �(p+ t)n. The minimum of the last expression
as function of x (x ≥ 1) is reached for �x = q(p+t)

p(q−t) and the
above inequality gives

∑

k≤i≤n

(
n

i

)
piqn−i ≤

[(
p

p + t

)p+t(
q

q − t

)q−t
]n

. (266)

The inequality above reads, for p = 1/2 (therefore q =
1/2) and t = β − 1/2 where β = 1 − α ∈ [1/2, 1],

∑

βn≤i≤n

(
n

i

)
≤ 2nh(β). (267)

Using the identity
(

n

i

)
=

n!
(n − i)!i!

=
(

n

n − i

)
(268)

and remarking that H1(α) = H1(1 − β) = H1(β), we get
Property 13:

∀0 ≤ α ≤ 1
2
,

∑

0≤i≤αn

(
n

i

)
≤ 2H1(α)n. (269)

Let’s write (266) as

∑

k≤i≤n

(
n

i

)
piqn−i ≤ eng(t) (270)

where

g(t) = ln

[(
p

p + t

)p+t(
q

q − t

)q−t
]
. (271)

Then g is C∞ on [0, q[, and applying Taylor’s formula at
order 2, we get

g(t) = g(0) + tg′(0) +
∫ t

0

g′′(u)(t − u)du. (272)

It is easy to check that g(0) = g′(0) = 0 and that g′′(u) =
− 1

(p+u)(q−u) ≤ −4 for any u ∈]0, q[. Therefore

g(t) =
∫ t

0

g′′(u)(t − u)du

≤ −4
∫ t

0

(t − u)du

≤ −2t2.

Since the exponential function is monotonically increas-
ing, we get

eg(t) ≤ e−2t2 , (273)
therefore

∑

(p+t)n≤i≤n

(
n

i

)
piqn−i ≤ e−2t2n (274)

which gives Property 14.

Suppose now that 0 < p − t ≤ p < 1. Using the iden-
tity (268), we get

∑

0≤i≤(p−t)n

(
n

i

)
piqn−i =

∑

0≤i≤(p−t)n

(
n

n − i

)
qn−ipi

=
∑

n−(p−t)n≤j≤n

(
n

j

)
qjpn−j

=
∑

(q+t)n≤j≤n

(
n

j

)
qjpn−j,

where 0 < q ≤ q + t < 1. Applying Property 14, we get

∑

0≤i≤(p−t)n

(
n

i

)
pi(1 − p)n−i ≤ e−2t2n (275)

which concludes the proofs for the binomial tail inequali-
ties. We now prove Property 16.

The probability that B contains exactly k elements of
A, for 0 ≤ k ≤ |A|, reads

Pr(|A ∩ B| = k) =
(|A|

k

)
pk(1 − p)|A|−k. (276)

Therefore, the probability that A contains more than (p+
τ)|A| elements of A reads

Pr(|A ∩ B| ≥ (p + τ)|A|)
=

∑

(p+τ)n≤k≤|A|
Pr(|A ∩ B| = k) (277)

=
∑

(p+τ)n≤k≤|A|

(|A|
k

)
pk(1 − p)|A|−k (278)

≤ exp[−2τ2|A|], (279)

using the binomial tail inequality (Property 14). Likewise,
the probability that A contains less than (p − τ)|A| ele-
ments of A reads

Pr(|A ∩ B| ≤ (p − τ)|A|)
=

∑

0≤k≤(p−τ)|A|
Pr(|A ∩ B| = k) (280)

=
∑

0≤k≤(p−τ)|A|

(|A|
k

)
pk(1 − p)|A|−k (281)

≤ exp[−2τ2|A|], (282)

using the binomial tail inequality (Property 15). This con-
cludes the proof. �
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